Long-term support with an ambulatory percutaneous paracorporeal artificial lung

Xiaoqin Zhou, Dongfang Wang, Ryan Sumpter, Gary Pattison, Cherry Ballard-Croft, Joseph B. Zwischenberger

Research output: Contribution to journalArticlepeer-review

24 Scopus citations


Background: Conventional extracorporeal membrane oxygenation is bulky and non-ambulatory and requires multiple blood transfusions. We hypothesized that a percutaneous, paracorporeal artificial lung (PAL) could be established through a single venous cannulation to provide long-term ambulatory respiratory support. Methods: Our PAL system was tested in 11 healthy sheep. An Avalon Elite dual-lumen cannula (DLC), inserted through the right jugular vein into the superior vena cava, right atrium, and inferior vena cava, was connected to a CentriMag pump and compact hollow-fiber gas exchanger, forming a short-circuit PAL system. All sheep were moved to intensive care unit and were ambulatory after anesthesia recovery. Hemodynamics and device performance were measured daily. Results: The ambulatory PALs were successfully established in all sheep. The sheep were awake, ate, and moved freely in the metabolic cage, with no need of artificial nutrition or blood transfusion. All sheep had stable hemodynamics, with 2 liters/min of average circuit flow and hemoglobin levels exceeding 9.2 g/dl throughout the experiment. A progressive decrease of oxygen transfer and carbon dioxide removal capacity was observed. Sheep were euthanized between 10 and 24 days for bleeding (n = 2), gas exchanger failure (n = 6), and DLC issues (n = 3). Conclusions: We successfully established long-term ambulatory PAL for up to 24 days in 11 animals using our patented DLC through a single-site percutaneous venous cannulation. Critical bleeding/thrombosis formation and gas exchanger durability remain two major challenges for long-term-ambulatory PAL.

Original languageEnglish
Pages (from-to)648-654
Number of pages7
JournalJournal of Heart and Lung Transplantation
Issue number6
StatePublished - Jun 2012

Bibliographical note

Funding Information:
This study was partly supported in part by grants from the National Institutes of Health ( HL 064508 and HL 068375 ). The AvalonElite DLCs used in this study were provided by Avalon at no cost.


  • dual lumen cannula
  • extracorporeal membrane oxygenation
  • long-term ambulatory paracorporeal artificial lung
  • sheep

ASJC Scopus subject areas

  • Surgery
  • Pulmonary and Respiratory Medicine
  • Cardiology and Cardiovascular Medicine
  • Transplantation


Dive into the research topics of 'Long-term support with an ambulatory percutaneous paracorporeal artificial lung'. Together they form a unique fingerprint.

Cite this