Longitudinal analysis of arterial blood pressure and heart rate response to acute behavioral stress in rats with type 1 diabetes mellitus and in age-matched controls

David C. Randall, Richard O. Speakman, Dennis L. Silcox, Laura V. Brown, David R. Brown, Ming C. Gong, Abhijit Patwardhan, L. Raymond Reynolds, Dennis G. Karounos, Don E. Burgess, Chikodi N. Anigbogu

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

We recorded via telemetry the arterial blood pressure (BP) and heart rate (HR) response to classical conditioning following the spontaneous onset of autoimmune diabetes in BBDP/Wor rats vs. age-matched, diabetes-resistant control (BBDR/Wor) rats. Our purpose was to evaluate the autonomic regulatory responses to an acute stress in a diabetic state of up to 12months duration. The stress was a 15-s pulsed tone (CS+) followed by a 0.5s tail shock.The initial, transient increase in BP (i.e., the "first component," or C1), known to be derived from an orienting response and produced by a sympathetic increase in peripheral resistance, was similar in diabetic and control rats through ~ 9months of diabetes; it was smaller in diabetic rats 10 months after diabetes onset. Weakening of the C1 BP increase in rats that were diabetic for >10 months is consistent with the effects of sympathetic neuropathy. A longer latency, smaller, but sustained "second component" (C 2) conditional increase in BP, that is acquired as a rat learns the association between CS+ and the shock, and which results from an increase in cardiac output, was smaller in the diabetic vs. control rats starting from the first month of diabetes. A concomitant HR slowing was also smaller in diabetic rats. The difference in the C 2 BP increase, as observed already during the first month of diabetes, is probably secondary to the effects of hyperglycemia upon myocardial metabolism and contractile function, but it may also result from effects on cognition. The small HR slowing concomitant with the C 2 pressor event is probably secondary to differences in baroreflex activation or function, though parasympathetic dysfunction may contribute later in the duration of diabetes.The nearly immediate deficit after disease onset in the C 2 response indicates that diabetes alters BP and HR responses to external challenges prior to the development of structural changes in the vasculature or autonomic nerves.

Original languageEnglish
Article numberArticle 53
JournalFrontiers in Physiology
Volume2 AUG
DOIs
StatePublished - 2011

Keywords

  • Anxiety
  • Autonomic nervous system
  • Cardiovascular system
  • Dysautonomia
  • Pavlovian (classical) conditioning
  • Telemetry

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Longitudinal analysis of arterial blood pressure and heart rate response to acute behavioral stress in rats with type 1 diabetes mellitus and in age-matched controls'. Together they form a unique fingerprint.

Cite this