TY - JOUR
T1 - Loss of biliverdin reductase-A favors Tau hyper-phosphorylation in Alzheimer's disease
AU - Sharma, Nidhi
AU - Tramutola, Antonella
AU - Lanzillotta, Chiara
AU - Arena, Andrea
AU - Blarzino, Carla
AU - Cassano, Tommaso
AU - Butterfield, D. Allan
AU - Di Domenico, Fabio
AU - Perluigi, Marzia
AU - Barone, Eugenio
N1 - Publisher Copyright:
© 2019 Elsevier Inc.
PY - 2019/5
Y1 - 2019/5
N2 - Hyper-active GSK-3β favors Tau phosphorylation during the progression of Alzheimer's disease (AD). Akt is one of the main kinases inhibiting GSK-3β and its activation occurs in response to neurotoxic stimuli including, i.e., oxidative stress. Biliverdin reductase-A (BVR-A) is a scaffold protein favoring the Akt-mediated inhibition of GSK-3β. Reduced BVR-A levels along with increased oxidative stress were observed early in the hippocampus of 3xTg-AD mice (at 6 months), thus suggesting that loss of BVR-A could be a limiting factor in the oxidative stress-induced Akt-mediated inhibition of GSK-3β in AD. We evaluated changes of BVR-A, Akt, GSK-3β oxidative stress and Tau phosphorylation levels: (a) in brain from young (6-months) and old (12-months) 3xTg-AD mice; and (b) in post-mortem inferior parietal lobule (IPL) samples from amnestic mild cognitive impairment (MCI), from AD and from age-matched controls. Furthermore, similar analyses were performed in vitro in cells lacking BVR-A and treated with H 2 O 2 . Reduced BVR-A levels along with: (a) increased oxidative stress; (b) reduced GSK-3β inhibition; and (c) increased Tau Ser404 phosphorylation (target of GSK-3β activity) without changes of Akt activation in young mice, were observed. Similar findings were obtained in MCI, consistent with the notion that this is a molecular mechanism disrupted in humans. Interestingly, cells lacking BVR-A and treated with H 2 O 2 showed reduced GSK-3β inhibition and increased Tau Ser404 phosphorylation, which resulted from a defect of Akt and GSK-3β physical interaction. Reduced levels of Akt/GSK-3β complex were confirmed in both young 3xTg-AD and MCI brain. We demonstrated that loss of BVR-A impairs the neuroprotective Akt-mediated inhibition of GSK-3β in response to oxidative stress, thus contributing to Tau hyper-phosphorylation in early stage AD. Such changes potential provide promising therapeutic targets for this devastating disorder.
AB - Hyper-active GSK-3β favors Tau phosphorylation during the progression of Alzheimer's disease (AD). Akt is one of the main kinases inhibiting GSK-3β and its activation occurs in response to neurotoxic stimuli including, i.e., oxidative stress. Biliverdin reductase-A (BVR-A) is a scaffold protein favoring the Akt-mediated inhibition of GSK-3β. Reduced BVR-A levels along with increased oxidative stress were observed early in the hippocampus of 3xTg-AD mice (at 6 months), thus suggesting that loss of BVR-A could be a limiting factor in the oxidative stress-induced Akt-mediated inhibition of GSK-3β in AD. We evaluated changes of BVR-A, Akt, GSK-3β oxidative stress and Tau phosphorylation levels: (a) in brain from young (6-months) and old (12-months) 3xTg-AD mice; and (b) in post-mortem inferior parietal lobule (IPL) samples from amnestic mild cognitive impairment (MCI), from AD and from age-matched controls. Furthermore, similar analyses were performed in vitro in cells lacking BVR-A and treated with H 2 O 2 . Reduced BVR-A levels along with: (a) increased oxidative stress; (b) reduced GSK-3β inhibition; and (c) increased Tau Ser404 phosphorylation (target of GSK-3β activity) without changes of Akt activation in young mice, were observed. Similar findings were obtained in MCI, consistent with the notion that this is a molecular mechanism disrupted in humans. Interestingly, cells lacking BVR-A and treated with H 2 O 2 showed reduced GSK-3β inhibition and increased Tau Ser404 phosphorylation, which resulted from a defect of Akt and GSK-3β physical interaction. Reduced levels of Akt/GSK-3β complex were confirmed in both young 3xTg-AD and MCI brain. We demonstrated that loss of BVR-A impairs the neuroprotective Akt-mediated inhibition of GSK-3β in response to oxidative stress, thus contributing to Tau hyper-phosphorylation in early stage AD. Such changes potential provide promising therapeutic targets for this devastating disorder.
KW - Akt
KW - Alzheimer's disease
KW - Biliverdin reductase-A
KW - GSK-3β
KW - Oxidative stress
KW - Tau phosphorylation
UR - http://www.scopus.com/inward/record.url?scp=85061254683&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85061254683&partnerID=8YFLogxK
U2 - 10.1016/j.nbd.2019.02.003
DO - 10.1016/j.nbd.2019.02.003
M3 - Article
C2 - 30738142
AN - SCOPUS:85061254683
SN - 0969-9961
VL - 125
SP - 176
EP - 189
JO - Neurobiology of Disease
JF - Neurobiology of Disease
ER -