Abstract
Background. The low-density lipoprotein receptor-related protein 1 (LRP1) plays critical roles in lipid metabolism, cell survival, and the clearance of amyloid-β (Aβ) peptide. Functional soluble LRP1 (sLRP1) has been detected in circulating human placenta; however, whether sLRP1 is also present in the central nervous system is unclear. Results. Here we show that abundant sLRP1 capable of binding its ligands is present in human brain tissue and cerebral spinal fluid (CSF). Interestingly, the levels of sLRP1 in CSF are significantly increased in older individuals, suggesting that either LRP1 shedding is increased or sLRP1 clearance is decreased during aging. To examine potential effects of pathological ligands on LRP1 shedding, we treated MEF cells with Aβ peptide and found that LRP1 shedding was increased. ADAM10 and ADAM17 are key members of the ADAM family that process membrane-associated proteins including amyloid precursor protein and Notch. We found that LRP1 shedding was significantly decreased in MEF cells lacking ADAM10 and/or ADAM17. Furthermore, forced expression of ADAM10 increased LRP1 shedding, which was inhibited by ADAM-specific inhibitor TIMP-3. Conclusion. Our results demonstrate that LRP1 is shed by ADAM10 and ADAM17 and functional sLRP1 is abundantly present in human brain and CSF. Dysregulated LRP1 shedding during aging could alter its function and may contribute to the pathogenesis of AD.
Original language | English |
---|---|
Article number | 17 |
Journal | Molecular Neurodegeneration |
Volume | 4 |
Issue number | 1 |
DOIs | |
State | Published - 2009 |
Bibliographical note
Funding Information:This work was supported by NIH grant R01 AG031784, a Zenith Fellows Award from the Alzheimer's Association, and a grant from the American Health Assistant Foundation to G.B. The authors thank Dr. Paul Saftig for providing critical cell lysates and media. Financial support was given to K. Reiss by the DFG, SFB 415 and the Center of Excellence "Inflammation at Interfaces".
Funding
This work was supported by NIH grant R01 AG031784, a Zenith Fellows Award from the Alzheimer's Association, and a grant from the American Health Assistant Foundation to G.B. The authors thank Dr. Paul Saftig for providing critical cell lysates and media. Financial support was given to K. Reiss by the DFG, SFB 415 and the Center of Excellence "Inflammation at Interfaces".
Funders | Funder number |
---|---|
National Institutes of Health (NIH) | R01 AG031784 |
Alzheimer's Association | |
American Health Assistance Foundation | |
Deutsche Forschungsgemeinschaft | SFB 415 |
ASJC Scopus subject areas
- Molecular Biology
- Clinical Neurology
- Cellular and Molecular Neuroscience