TY - JOUR
T1 - Machine-learning Classifiers for Intermediate Redshift Emission-line Galaxies
AU - Zhang, Kai
AU - Schlegel, David J.
AU - Andrews, Brett H.
AU - Comparat, Johan
AU - Schafer, Christoph
AU - Vazquez Mata, Jose Antonio
AU - Kneib, Jean Paul
AU - Yan, Renbin
N1 - Publisher Copyright:
© 2019. The American Astronomical Society. All rights reserved.
PY - 2019/9/20
Y1 - 2019/9/20
N2 - Classification of intermediate redshift (z = 0.3-0.8) emission line galaxies as star-forming galaxies, composite galaxies, active galactic nuclei (AGNs), or low-ionization nuclear emission regions (LINERs) using optical spectra alone was impossible because the lines used for standard optical diagnostic diagrams: [N ii], Hα, and [S ii] are redshifted out of the observed wavelength range. In this work, we address this problem using four supervised machine-learning classification algorithms: k-nearest neighbors (KNN), support vector classifier (SVC), random forest (RF), and a multilayer perceptron (MLP) neural network. For input features, we use properties that can be measured from optical galaxy spectra out to z < 0.8 - [O iii]/Hβ, [O ii]/Hβ, [O iii] line width, and stellar velocity dispersion - and four colors (u - g, g - r, r - i, and i - z) corrected to z = 0.1. The labels for the low redshift emission line galaxy training set are determined using standard optical diagnostic diagrams. RF has the best area under curve score for classifying all four galaxy types, meaning the highest distinguishing power. Both the AUC scores and accuracies of the other algorithms are ordered as MLP > SVC > KNN. The classification accuracies with all eight features (and the four spectroscopically determined features only) are 93.4% (92.3%) for star-forming galaxies, 69.4% (63.7%) for composite galaxies, 71.8% (67.3%) for AGNs, and 65.7% (60.8%) for LINERs. The stacked spectrum of galaxies of the same type as determined by optical diagnostic diagrams at low redshift and RF at intermediate redshift are broadly consistent. Our publicly available code (https://github.com/zkdtc/MLC_ELGs) and trained models will be instrumental for classifying emission line galaxies in upcoming wide-field spectroscopic surveys.
AB - Classification of intermediate redshift (z = 0.3-0.8) emission line galaxies as star-forming galaxies, composite galaxies, active galactic nuclei (AGNs), or low-ionization nuclear emission regions (LINERs) using optical spectra alone was impossible because the lines used for standard optical diagnostic diagrams: [N ii], Hα, and [S ii] are redshifted out of the observed wavelength range. In this work, we address this problem using four supervised machine-learning classification algorithms: k-nearest neighbors (KNN), support vector classifier (SVC), random forest (RF), and a multilayer perceptron (MLP) neural network. For input features, we use properties that can be measured from optical galaxy spectra out to z < 0.8 - [O iii]/Hβ, [O ii]/Hβ, [O iii] line width, and stellar velocity dispersion - and four colors (u - g, g - r, r - i, and i - z) corrected to z = 0.1. The labels for the low redshift emission line galaxy training set are determined using standard optical diagnostic diagrams. RF has the best area under curve score for classifying all four galaxy types, meaning the highest distinguishing power. Both the AUC scores and accuracies of the other algorithms are ordered as MLP > SVC > KNN. The classification accuracies with all eight features (and the four spectroscopically determined features only) are 93.4% (92.3%) for star-forming galaxies, 69.4% (63.7%) for composite galaxies, 71.8% (67.3%) for AGNs, and 65.7% (60.8%) for LINERs. The stacked spectrum of galaxies of the same type as determined by optical diagnostic diagrams at low redshift and RF at intermediate redshift are broadly consistent. Our publicly available code (https://github.com/zkdtc/MLC_ELGs) and trained models will be instrumental for classifying emission line galaxies in upcoming wide-field spectroscopic surveys.
KW - galaxies: Seyfert
KW - galaxies: active
KW - quasars: emission lines
UR - http://www.scopus.com/inward/record.url?scp=85073103485&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85073103485&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ab397e
DO - 10.3847/1538-4357/ab397e
M3 - Article
AN - SCOPUS:85073103485
SN - 0004-637X
VL - 883
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 63
ER -