Abstract
Introduction: Azithromycin (AZM) and other macrolide antibiotics are applied as immunomodulatory treatments for CNS disorders. The immunomodulatory and antibiotic properties of AZM are purportedly independent. Aims: To improve the efficacy and reduce antibiotic resistance risk of AZM-based therapies, we evaluated the immunomodulatory and neuroprotective properties of novel AZM derivatives. We semisynthetically prepared derivatives by altering sugar moieties established as important for inhibiting bacterial protein synthesis. Bone marrow-derived macrophages (BMDMs) were stimulated in vitro with proinflammatory, M1, stimuli (LPS + INF-gamma) with and without derivative costimulation. Pro- and anti-inflammatory cytokine production, IL-12 and IL-10, respectively, was quantified using ELISA. Neuron culture treatment with BMDM supernatant was used to assess derivative neuroprotective potential. Results: Azithromycin and some derivatives increased IL-10 and reduced IL-12 production of M1 macrophages. IL-10/IL-12 cytokine shifts closely correlated with the ability of AZM and derivatives to mitigate macrophage neurotoxicity. Conclusions: Sugar moieties that bind bacterial ribosomal complexes can be modified in a manner that retains AZM immunomodulation and neuroprotection. Since the effects of BMDMs in vitro are predictive of CNS macrophage responses, our results open new therapeutic avenues for managing maladaptive CNS inflammation and support utilization of IL-10/12 cytokine profiles as indicators of macrophage polarization and neurotoxicity.
Original language | English |
---|---|
Pages (from-to) | 591-600 |
Number of pages | 10 |
Journal | CNS Neuroscience and Therapeutics |
Volume | 25 |
Issue number | 5 |
DOIs | |
State | Published - May 2019 |
Bibliographical note
Publisher Copyright:© 2018 The Authors. CNS Neuroscience & Therapeutics Published by John Wiley & Sons Ltd.
Funding
This work was supported by the University of Kentucky Igniting Research Collaborations Pilot Grant Program to JCG and SGVL.
Funders | Funder number |
---|---|
University of Kentucky Igniting Research Collaborations Pilot | |
Institute of Neurological Disorders and Stroke National Advisory Neurological Disorders and Stroke Council | R01NS091582 |
Keywords
- M2
- brain
- erythromycin
- microglia
- spinal cord injury
- stroke
ASJC Scopus subject areas
- Pharmacology
- Psychiatry and Mental health
- Physiology (medical)
- Pharmacology (medical)