Magnetization dynamics of a Fibonacci-distorted kagome artificial spin ice

Ali Frotanpour, Justin Woods, Barry Farmer, Amrit P. Kaphle, Lance E. De Long, Loris Giovannini, Federico Montoncello

Research output: Contribution to journalArticlepeer-review

8 Scopus citations


We present results of ferromagnetic resonance (FMR) experiments and micromagnetic simulations for a distorted, two-dimensional (2D) kagome artificial spin ice. The distorted structure is created by continuously modulating the 2D primitive lattice translation vectors of a periodic honeycomb lattice, according to an aperiodic Fibonacci sequence used to generate 1D quasicrystals. Experimental data and micromagnetic simulations show that the Fibonacci distortion causes broadening and splitting of FMR modes into multiple branches, which accompany the increasing number of segment lengths and orientations that develop with increasing distortion. When the applied field is increased in the opposite direction to the net magnetization of a segment, spin wave modes appear, disappear, or suddenly shift, to signal segment magnetization reversal events. These results show that the complex behavior of reversal events, as well as well-defined frequencies and frequency-field slopes of FMR modes, can be precisely tuned by varying the severity of the aperiodic lattice distortion. This type of distorted structure could therefore provide a tool for the design of complicated magnonic systems.

Original languageEnglish
Article number224435
JournalPhysical Review B
Issue number22
StatePublished - Dec 29 2020

Bibliographical note

Funding Information:
Research at the University of Kentucky was supported by the US NSF Grant No. DMR-1506979, the UK Center for Advanced Materials, the UK Center for Computational Sciences, and the UK Center for Nanoscale Science and Engineering. Research at the Argonne National Laboratory, a US Department of Energy Office of Science User Facility, was supported under Contract No. DE-AC02-06CH11357.

Publisher Copyright:
© 2020 American Physical Society.

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics


Dive into the research topics of 'Magnetization dynamics of a Fibonacci-distorted kagome artificial spin ice'. Together they form a unique fingerprint.

Cite this