TY - JOUR
T1 - Manipulating unconventional CH-based hydrogen bonding in a methyltransferase via noncanonical amino acid mutagenesis
AU - Horowitz, Scott
AU - Adhikari, Upendra
AU - Dirk, Lynnette M.A.
AU - Del Rizzo, Paul A.
AU - Mehl, Ryan A.
AU - Houtz, Robert L.
AU - Al-Hashimi, Hashim M.
AU - Scheiner, Steve
AU - Trievel, Raymond C.
N1 - Copyright:
Copyright 2015 Elsevier B.V., All rights reserved.
PY - 2014/8/15
Y1 - 2014/8/15
N2 - Recent studies have demonstrated that the active sites of S-adenosylmethionine (AdoMet)-dependent methyltransferases form strong carbon-oxygen (CH⋯O) hydrogen bonds with the substrate's sulfonium group that are important in AdoMet binding and catalysis. To probe these interactions, we substituted the noncanonical amino acid p-aminophenylalanine (pAF) for the active site tyrosine in the lysine methyltransferase SET7/9, which forms multiple CH⋯O hydrogen bonds to AdoMet and is invariant in SET domain enzymes. Using quantum chemistry calculations to predict the mutation's effects, coupled with biochemical and structural studies, we observed that pAF forms a strong CH⋯N hydrogen bond to AdoMet that is offset by an energetically unfavorable amine group rotamer within the SET7/9 active site that hinders AdoMet binding and activity. Together, these results illustrate that the invariant tyrosine in SET domain methyltransferases functions as an essential hydrogen bonding hub and cannot be readily substituted by residues bearing other hydrogen bond acceptors.
AB - Recent studies have demonstrated that the active sites of S-adenosylmethionine (AdoMet)-dependent methyltransferases form strong carbon-oxygen (CH⋯O) hydrogen bonds with the substrate's sulfonium group that are important in AdoMet binding and catalysis. To probe these interactions, we substituted the noncanonical amino acid p-aminophenylalanine (pAF) for the active site tyrosine in the lysine methyltransferase SET7/9, which forms multiple CH⋯O hydrogen bonds to AdoMet and is invariant in SET domain enzymes. Using quantum chemistry calculations to predict the mutation's effects, coupled with biochemical and structural studies, we observed that pAF forms a strong CH⋯N hydrogen bond to AdoMet that is offset by an energetically unfavorable amine group rotamer within the SET7/9 active site that hinders AdoMet binding and activity. Together, these results illustrate that the invariant tyrosine in SET domain methyltransferases functions as an essential hydrogen bonding hub and cannot be readily substituted by residues bearing other hydrogen bond acceptors.
UR - http://www.scopus.com/inward/record.url?scp=84906261894&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84906261894&partnerID=8YFLogxK
U2 - 10.1021/cb5001185
DO - 10.1021/cb5001185
M3 - Article
C2 - 24914947
AN - SCOPUS:84906261894
SN - 1554-8929
VL - 9
SP - 1692
EP - 1697
JO - ACS Chemical Biology
JF - ACS Chemical Biology
IS - 8
ER -