TY - JOUR
T1 - MeaB Is A Component of the Methylmalonyl-CoA Mutase Complex Required for Protection of the Enzyme from Inactivation
AU - Korotkova, Natalia
AU - Lidstrom, Mary E.
PY - 2004/4/2
Y1 - 2004/4/2
N2 - Adenosylcobalamin-dependent methylmalonyl-CoA mutase catalyzes the interconversion of methylmalonyl-CoA and succinyl-CoA. In humans, deficiencies in the mutase lead to methylmalonic aciduria, a rare disease that is fatal in the first year of life. Such inherited deficiencies can result from mutations in the mutase structural gene or from mutations that impair the acquisition of cobalamins. Recently, a human gene of unknown function, MMAA, has been implicated in methylmalonic aciduria (Dobson, C. M., Wai, T., Leclerc, D., Wilson, A., Wu, X., Dore, C., Hudson, T., Rosenblatt, D. S., and Gravel, R. A. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 15554-15559). MMAA orthologs are widespread in bacteria, archaea, and eukaryotes. In Methylobacterium extorquens AM1, a mutant defective in the MMAA homolog meaB was unable to grow on C 1 and C2 compounds because of the inability to convert methylmalonyl-CoA to succinyl-CoA (Korotkova N., Chistoserdova, L., Kuksa, V., and Lidstrom, M. E. (2002) J. Bacteriol. 184, 1750-1758). Here we demonstrate that this defect is not due to the absence of adenosylcobalamin but due to an inactive form of methylmalonyl-CoA mutase. The presence of active mutase in double mutants defective in MeaB and in the synthesis of either R-methylmalonyl-CoA or adenosylcobalamin indicates that MeaB is necessary for protection of mutase from inactivation during catalysis. MeaB and methylmalonyl-CoA mutase from M. extorquens were cloned and purified in their active forms. We demonstrated that MeaB forms a complex with methylmalonyl-CoA mutase and stimulates in vitro mutase activity. These results support the hypothesis that MeaB functions to protect methylmalonyl-CoA mutase from irreversible inactivation.
AB - Adenosylcobalamin-dependent methylmalonyl-CoA mutase catalyzes the interconversion of methylmalonyl-CoA and succinyl-CoA. In humans, deficiencies in the mutase lead to methylmalonic aciduria, a rare disease that is fatal in the first year of life. Such inherited deficiencies can result from mutations in the mutase structural gene or from mutations that impair the acquisition of cobalamins. Recently, a human gene of unknown function, MMAA, has been implicated in methylmalonic aciduria (Dobson, C. M., Wai, T., Leclerc, D., Wilson, A., Wu, X., Dore, C., Hudson, T., Rosenblatt, D. S., and Gravel, R. A. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 15554-15559). MMAA orthologs are widespread in bacteria, archaea, and eukaryotes. In Methylobacterium extorquens AM1, a mutant defective in the MMAA homolog meaB was unable to grow on C 1 and C2 compounds because of the inability to convert methylmalonyl-CoA to succinyl-CoA (Korotkova N., Chistoserdova, L., Kuksa, V., and Lidstrom, M. E. (2002) J. Bacteriol. 184, 1750-1758). Here we demonstrate that this defect is not due to the absence of adenosylcobalamin but due to an inactive form of methylmalonyl-CoA mutase. The presence of active mutase in double mutants defective in MeaB and in the synthesis of either R-methylmalonyl-CoA or adenosylcobalamin indicates that MeaB is necessary for protection of mutase from inactivation during catalysis. MeaB and methylmalonyl-CoA mutase from M. extorquens were cloned and purified in their active forms. We demonstrated that MeaB forms a complex with methylmalonyl-CoA mutase and stimulates in vitro mutase activity. These results support the hypothesis that MeaB functions to protect methylmalonyl-CoA mutase from irreversible inactivation.
UR - http://www.scopus.com/inward/record.url?scp=1842791547&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=1842791547&partnerID=8YFLogxK
U2 - 10.1074/jbc.M312852200
DO - 10.1074/jbc.M312852200
M3 - Article
C2 - 14734568
AN - SCOPUS:1842791547
SN - 0021-9258
VL - 279
SP - 13652
EP - 13658
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 14
ER -