Measurement of HΛ4 and HeΛ4 binding energy in Au+Au collisions at sNN = 3 GeV

Research output: Contribution to journalArticlepeer-review

Abstract

Measurements of mass and Λ binding energy of Λ4H and Λ4He in Au+Au collisions at sNN=3 GeV are presented, with an aim to address the charge symmetry breaking (CSB) problem in hypernuclei systems with atomic number A = 4. The Λ binding energies are measured to be 2.22±0.06(stat.)±0.14(syst.) MeV and 2.38±0.13(stat.)±0.12(syst.) MeV for Λ4H and Λ4He, respectively. The measured Λ binding-energy difference is 0.16±0.14(stat.)±0.10(syst.) MeV for ground states. Combined with the γ-ray transition energies, the binding-energy difference for excited states is −0.16±0.14(stat.)±0.10(syst.) MeV, which is negative and comparable to the value of the ground states within uncertainties. These new measurements on the Λ binding-energy difference in A = 4 hypernuclei systems are consistent with the theoretical calculations that result in ΔBΛ4(1exc+)≈−ΔBΛ4(0g.s.+)<0 and present a new method for the study of CSB effect using relativistic heavy-ion collisions.

Original languageEnglish
Article number137449
JournalPhysics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
Volume834
DOIs
StatePublished - Nov 10 2022

Bibliographical note

Funding Information:
We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Office of Nuclear Physics within the U.S. DOE Office of Science, the U.S. National Science Foundation, National Natural Science Foundation of China, Chinese Academy of Science, the Ministry of Science and Technology of China and the Chinese Ministry of Education, the Higher Education Sprout Project by Ministry of Education at NCKU, the National Research Foundation of Korea, Czech Science Foundation and The Ministry of Education, Youth and Sports of the Czech Republic, Hungarian National Research, Development and Innovation Office, New National Excellency Programme of the Hungarian Ministry of Human Capacities, Department of Atomic Energy and Department of Science and Technology of the Government of India, the National Science Centre of Poland, the Ministry of Science, Education and Sports of the Republic of Croatia, German Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF), Helmholtz Association, Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS).

Funding Information:
We thank the RHIC Operations Group and RCF at BNL , the NERSC Center at LBNL , and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Office of Nuclear Physics within the U.S. DOE Office of Science , the U.S. National Science Foundation , National Natural Science Foundation of China , Chinese Academy of Science , the Ministry of Science and Technology of China and the Chinese Ministry of Education , the Higher Education Sprout Project by Ministry of Education at NCKU , the National Research Foundation of Korea , Czech Science Foundation and The Ministry of Education, Youth and Sports of the Czech Republic, Hungarian National Research, Development and Innovation Office , New National Excellency Programme of the Hungarian Ministry of Human Capacities , Department of Atomic Energy and Department of Science and Technology of the Government of India , the National Science Centre of Poland, the Ministry of Science, Education and Sports of the Republic of Croatia, German Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF), Helmholtz Association , Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS).

Publisher Copyright:
© 2022 The Author(s)

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'Measurement of HΛ4 and HeΛ4 binding energy in Au+Au collisions at sNN = 3 GeV'. Together they form a unique fingerprint.

Cite this