Measurements of electron transport in liquid and gas Xenon using a laser-driven photocathode

O. Njoya, T. Tsang, M. Tarka, W. Fairbank, K. S. Kumar, T. Rao, T. Wager, S. Al Kharusi, G. Anton, I. J. Arnquist, I. Badhrees, P. S. Barbeau, D. Beck, V. Belov, T. Bhatta, J. P. Brodsky, E. Brown, T. Brunner, E. Caden, G. F. CaoL. Cao, W. R. Cen, C. Chambers, B. Chana, S. A. Charlebois, M. Chiu, B. Cleveland, M. Coon, A. Craycraft, J. Dalmasson, T. Daniels, L. Darroch, S. J. Daugherty, A. De, A. Der Mesrobian-Kabakian, R. DeVoe, M. L. Di Vacri, J. Dilling, Y. Y. Ding, M. J. Dolinski, A. Dragone, J. Echevers, M. Elbeltagi, L. Fabris, D. Fairbank, J. Farine, S. Ferrara, S. Feyzbakhsh, R. Fontaine, A. Fucarino, G. Gallina, P. Gautam, G. Giacomini, D. Goeldi, R. Gornea, G. Gratta, E. V. Hansen, M. Heffner, E. W. Hoppe, J. Hößl, A. House, M. Hughes, A. Iverson, A. Jamil, M. J. Jewell, X. S. Jiang, A. Karelin, L. J. Kaufman, D. Kodroff, T. Koffas, R. Krücken, A. Kuchenkov, Y. Lan, A. Larson, K. G. Leach, B. G. Lenardo, D. S. Leonard, G. Li, S. Li, Z. Li, C. Licciardi, Y. H. Lin, P. Lv, R. MacLellan, T. McElroy, M. Medina-Peregrina, T. Michel, B. Mong, D. C. Moore, K. Murray, P. Nakarmi, C. R. Natzke, R. J. Newby, Z. Ning, F. Nolet, O. Nusair, K. Odgers, A. Odian, M. Oriunno, J. L. Orrell, G. S. Ortega, I. Ostrovskiy, C. T. Overman, S. Parent, A. Piepke, A. Pocar, J. F. Pratte, V. Radeka, E. Raguzin, S. Rescia, F. Retière, M. Richman, A. Robinson, T. Rossignol, P. C. Rowson, N. Roy, J. Runge, R. Saldanha, S. Sangiorgio, K. Skarpaas, A. K. Soma, G. St-Hilaire, V. Stekhanov, T. Stiegler, X. L. Sun, J. Todd, T. Tolba, T. I. Totev, R. Tsang, F. Vachon, V. Veeraraghavan, S. Viel, G. Visser, C. Vivo-Vilches, J. L. Vuilleumier, M. Wagenpfeil, M. Walent, Q. Wang, M. Ward, J. Watkins, M. Weber, W. Wei, L. J. Wen, U. Wichoski, S. X. Wu, W. H. Wu, X. Wu, Q. Xia, H. Yang, L. Yang, Y. R. Yen, O. Zeldovich, J. Zhao, Y. Zhou, T. Ziegler

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


Measurements of electron drift properties in liquid and gaseous xenon are reported. The electrons are generated by the photoelectric effect in a semi-transparent gold photocathode driven in transmission mode with a pulsed ultraviolet laser. The charges drift and diffuse in a small chamber at various electric fields and a fixed drift distance of 2.0 cm. At an electric field of 0.5 kV/cm, the measured drift velocities and corresponding temperature coefficients respectively are 1.97±0.04mm∕μs and (−0.69±0.05)%/K for liquid xenon, and 1.42±0.03mm∕μs and (+0.11±0.01)%/K for gaseous xenon at 1.5 bar. In addition, we measure longitudinal diffusion coefficients of 25.7±4.6 cm2/s and 149±23 cm2/s, for liquid and gas, respectively. The quantum efficiency of the gold photocathode is studied at the photon energy of 4.73 eV in liquid and gaseous xenon, and vacuum. These charge transport properties and the behavior of photocathodes in a xenon environment are important in designing and calibrating future large scale noble liquid detectors.

Original languageEnglish
Article number163965
JournalNuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
StatePublished - Aug 21 2020

Bibliographical note

Funding Information:
This work has been supported by the Offices of Nuclear and High Energy Physics within the DOE Office of Science , and NSF in the United States , by NSERC , CFI , the A. McDonald Institute — CFREF, FRQNT, and NRC in Canada , by IBS in Korea , by RFBR (18-02-00550) in Russia, and by CAS and NSFC in China. This work was supported in part by Laboratory Directed Research and Development (LDRD) programs at Brookhaven National Laboratory (BNL) .

Publisher Copyright:
© 2020

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Instrumentation


Dive into the research topics of 'Measurements of electron transport in liquid and gas Xenon using a laser-driven photocathode'. Together they form a unique fingerprint.

Cite this