Abstract
Process simulations of batch fermentations with in situ product separation traditionally decouple these interdependent steps by simulating a separate “steady state” continuous fermentation and separation units. In this study, an integrated batch fermentation and separation process was simulated for a model system of acetone–butanol–ethanol (ABE) fermentation with in situ gas stripping, such that the fermentation kinetics are linked in real-time to the gas stripping process. A time-dependent cell growth, substrate utilization, and product production is translated to an Aspen Plus batch reactor. This approach capitalizes on the phase equilibria calculations of Aspen Plus to predict the effect of stripping on the ABE fermentation kinetics. The product profiles of the integrated fermentation and separation are shown to be sensitive to gas flow rate, unlike separate steady state fermentation and separation simulations. This study demonstrates the importance of coupled fermentation and separation simulation approaches for the systematic analyses of unsteady state processes.
Original language | English |
---|---|
Pages (from-to) | 1283-1294 |
Number of pages | 12 |
Journal | Bioprocess and Biosystems Engineering |
Volume | 41 |
Issue number | 9 |
DOIs | |
State | Published - Sep 1 2018 |
Bibliographical note
Publisher Copyright:© 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
Keywords
- Biochemical reactors
- Cell growth model
- Fermentation
- In situ separation
- Process simulation
ASJC Scopus subject areas
- Biotechnology
- Bioengineering