Meta Clustering for Collaborative Learning

Chenglong Ye, Reza Ghanadan, Jie Ding

Research output: Contribution to journalArticlepeer-review

Abstract

In collaborative learning, learners coordinate to enhance each of their learning performances. From the perspective of any learner, a critical challenge is to filter out unqualified collaborators. We propose a framework named meta clustering to address the challenge. Unlike the classical problem of clustering data points, meta clustering categorizes learners. Assuming each learner performs a supervised regression on a standalone local dataset, we propose a Select-Exchange-Cluster (SEC) method to classify the learners by their underlying supervised functions. We theoretically show that the SEC can cluster learners into accurate collaboration sets. Empirical studies corroborate the theoretical analysis and demonstrate that SEC can be computationally efficient, robust against learner heterogeneity, and effective in enhancing single-learner performance. Also, we show how the proposed approach may be used to enhance data fairness. Supplementary materials for this article are available online.

Original languageEnglish
JournalJournal of Computational and Graphical Statistics
DOIs
StateAccepted/In press - 2022

Bibliographical note

Publisher Copyright:
© 2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America.

Keywords

  • Data integration
  • Distributed computing
  • Fairness
  • Meta clustering
  • Regression

ASJC Scopus subject areas

  • Statistics and Probability
  • Statistics, Probability and Uncertainty
  • Discrete Mathematics and Combinatorics

Fingerprint

Dive into the research topics of 'Meta Clustering for Collaborative Learning'. Together they form a unique fingerprint.

Cite this