Metaboloptics: Visualization of the tumor functional landscape via metabolic and vascular imaging

Amy F. Martinez, Samuel S. McCachren, Marianne Lee, Helen A. Murphy, Caigang Zhu, Brian T. Crouch, Hannah L. Martin, Alaattin Erkanli, Narasimhan Rajaram, Kathleen A. Ashcraft, Andrew N. Fontanella, Mark W. Dewhirst, Nirmala Ramanujam

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Many cancers adeptly modulate metabolism to thrive in fluctuating oxygen conditions; however, current tools fail to image metabolic and vascular endpoints at spatial resolutions needed to visualize these adaptations in vivo. We demonstrate a high-resolution intravital microscopy technique to quantify glucose uptake, mitochondrial membrane potential (MMP), and SO2 to characterize the in vivo phentoypes of three distinct murine breast cancer lines. Tetramethyl rhodamine, ethyl ester (TMRE) was thoroughly validated to report on MMP in normal and tumor-bearing mice. Imaging MMP or glucose uptake together with vascular endpoints revealed that metastatic 4T1 tumors maintained increased glucose uptake across all SO2 ("Warburg effect"), and also showed increased MMP relative to normal tissue. Non-metastatic 67NR and 4T07 tumor lines both displayed increased MMP, but comparable glucose uptake, relative to normal tissue. The 4T1 peritumoral areas also showed a significant glycolytic shift relative to the tumor regions. During a hypoxic stress test, 4T1 tumors showed significant increases in MMP with corresponding significant drops in SO2, indicative of intensified mitochondrial metabolism. Conversely, 4T07 and 67NR tumors shifted toward glycolysis during hypoxia. Our findings underscore the importance of imaging metabolic endpoints within the context of a living microenvironment to gain insight into a tumor's adaptive behavior.

Original languageEnglish
Article number4171
JournalScientific Reports
Volume8
Issue number1
DOIs
StatePublished - Dec 1 2018

Bibliographical note

Publisher Copyright:
© 2018 The Author(s).

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Metaboloptics: Visualization of the tumor functional landscape via metabolic and vascular imaging'. Together they form a unique fingerprint.

Cite this