MgADP Promotes Myosin Head Movement toward Actin at Low [Ca2+] to Increase Force Production and Ca2+-Sensitivity of Contraction in Permeabilized Porcine Myocardial Strips

Peter O. Awinda, Weikang Ma, Kyrah L. Turner, Jing Zhao, Henry Gong, Mindy S. Thompson, Kenneth S. Campbell, Thomas C. Irving, Bertrand C.W. Tanner

Research output: Contribution to journalArticlepeer-review


Myosin cross-bridges dissociate from actin following Mg2+-adenosine triphosphate (MgATP) binding. Myosin hydrolyses MgATP into inorganic phosphate (Pi) and Mg2+-adenosine diphosphate (ADP), and release of these hydrolysis products drives chemo-mechanical energy transitions within the cross-bridge cycle to power muscle contraction. Some forms of heart disease are associated with metabolic or enzymatic dysregulation of the MgATP-MgADP nucleotide pool, resulting in elevated cytosolic [MgADP] and impaired muscle relaxation. We investigated the mechanical and structural effects of increasing [MgADP] in permeabilized myocardial strips from porcine left ventricle samples. Sarcomere length was set to 2.0 µm at 28 °C, and all solutions contained 3% dextran T-500 to compress myofilament lattice spacing to near-physiological values. Under relaxing low [Ca2+] conditions (pCa 8.0, where pCa = −log10[Ca2+]), tension increased as [MgADP] increased from 0-5 mM. Complementary small-angle X-ray diffraction measurements show that the equatorial intensity ratio, I1,1/I1,0, also increased as [MgADP] increased from 0 to 5 mM, indicating myosin head movement away from the thick-filament backbone towards the thin-filament. Ca2+-activated force-pCa measurements show that Ca2+-sensitivity of contraction increased with 5 mM MgADP, compared to 0 mM MgADP. These data show that MgADP augments tension at low [Ca2+] and Ca2+-sensitivity of contraction, suggesting that MgADP destabilizes the quasi-helically ordered myosin OFF state, thereby shifting the cross-bridge population towards the disordered myosin ON state. Together, these results indicate that MgADP enhances the probability of cross-bridge binding to actin due to enhancement of both thick and thin filament-based activation mechanisms.

Original languageEnglish
Article number15084
JournalInternational Journal of Molecular Sciences
Issue number23
StatePublished - Dec 2022

Bibliographical note

Funding Information:
This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. This project was supported by grant P30 GM138395 from the National Institute of General Medical Sciences (NIGMS) of the National Institutes of Health (NIH). The content is solely the responsibility of the authors and does not necessarily reflect the official views of the NIGMS or the NIH. This project was also supported by grant R01 HL149164 from the National Heart, Lung, and Blood Institute of the NIH.

Publisher Copyright:
© 2022 by the authors.


  • X-ray diffraction
  • cardiac muscle
  • muscle mechanics
  • myofilament function
  • thick-filament structure

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry


Dive into the research topics of 'MgADP Promotes Myosin Head Movement toward Actin at Low [Ca2+] to Increase Force Production and Ca2+-Sensitivity of Contraction in Permeabilized Porcine Myocardial Strips'. Together they form a unique fingerprint.

Cite this