Micro-wilhelmy and related liquid property measurements using constant-diameter nanoneedle-tipped atomic force microscope probes

Mehdi M. Yazdanpanah, Mahdi Hosseini, Santosh Pabba, Scott M. Berry, Vladimir V. Dobrokhotov, Abdelilah Safir, Robert S. Keynton, Robert W. Cohn

Research output: Contribution to journalArticlepeer-review

61 Scopus citations

Abstract

The micro-Wilhelmy method is a well-established method of determining surface tension by measuring the force of withdrawing a tens of microns to millimeters in diameter cylindrical wire or fiber from a liquid. A comparison of insertion force to retraction force can also be used to determine the contact angle with the fiber. Given the limited availability of atomic force microscope (AFM) probes that have long constant diameter tips, force-distance (F-D) curves using probes with standard tapered tips have been difficult to relate to surface tension. In this report, constant diameter metal alloy nanowires (referred to as "nanoneedles") between 7.2 and 67 μm in length and 108 and 1006 nm in diameter were grown on AFM probes. F-D and Q damping AFM measurements of wetting and drag forces made with the probes were compared against standard macroscopic models of these forces on slender cylinders to estimate surface tension, contact angle, meniscus height, evaporation rate, and viscosity. The surface tensions for several low molecular weight liquids that were measured with these probes were between -4.2% and +8.3% of standard reported values. Also, the F-D curves show well-defined stair-step events on insertion and retraction from partial wetting liquids, compared to the continuously growing attractive force of standard tapered AFM probe tips. In the AFM used, the stair-step feature in F-D curves was repeatably monitored for at least 0.5 h (depending on the volatility of the liquid), and this feature was then used to evaluate evaporation rates (as low as 0.30 nm/s) through changes in the surface height of the liquid. A nanoneedle with a step change in diameter at a known distance from its end produced two steps in the F-D curve from which the meniscus height was determined. The step features enable meniscus height to be determined from distance between the steps, as an alternative to calculating the height corresponding to the AFM measured values of surface tension and contact angle. All but one of the eight measurements agreed to within 13%. The constant diameter of the nanoneedle also is used to relate viscous damping of the vibrating cantilever to a macroscopic model of Stokes drag on a long cylinder. Expected increases in drag force with insertion depth and viscosity are observed for several glycerol-water solutions. However, an additional damping term (associated with drag of the meniscus on the sidewalls of the nanoneedle) limits the sensitivity of the measurement of drag force for low-viscosity solutions, while low values of Q limit the sensitivity for high-viscosity solutions. Overall, reasonable correspondence is found between the macroscopic models and the measurements with the nanoneedle-tipped probes. Tighter environmental control of the AFM and treatments of needles to give them more ideal surfaces are expected to improve repeatability and make more evident subtle features that currently appear to be present on the F-D and Q damping curves.

Original languageEnglish
Pages (from-to)13753-13764
Number of pages12
JournalLangmuir
Volume24
Issue number23
DOIs
StatePublished - Dec 2 2008

ASJC Scopus subject areas

  • General Materials Science
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Micro-wilhelmy and related liquid property measurements using constant-diameter nanoneedle-tipped atomic force microscope probes'. Together they form a unique fingerprint.

Cite this