Microscopic study of magnetostatic spin waves

K. Rivkin, L. E. Delong, J. B. Ketterson

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

A relatively new method is developed to numerically calculate the spin-wave-related properties of a magnetic body of arbitrary shape. Starting with a discrete dipole approximation and the linearized Landau-Lifshitz equation, the resonant frequencies and the associated amplitudes of the individual moments are obtained for all modes; from this information we are able to calculate the energy absorbed by the various modes excited by a position- and time-dependent external magnetic field. The method has been demonstrated for a number of cases including thin disks and rings and for equilibrium configurations ranging from the saturated high-field limit to the vortex states at low fields.

Original languageEnglish
Article number10E309
JournalJournal of Applied Physics
Volume97
Issue number10
DOIs
StatePublished - May 15 2005

Bibliographical note

Funding Information:
We have developed a method for calculating the resonant modes and the absorption characteristics of a magnetic body of arbitrary shape in an arbitrary static and dynamic magnetic field that is applicable in the linear regime. The techniques have been demonstrated for a vortex ground state in a three-dimensional (3D) disk. This work was supported by NSF Grant No. ECS-0224210.

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Microscopic study of magnetostatic spin waves'. Together they form a unique fingerprint.

Cite this