Missense mutations in the central domains of cardiac myosin binding protein-C and their potential contribution to hypertrophic cardiomyopathy

Amy Pearce, Saraswathi Ponnam, Mark R. Holt, Thomas Randall, Rylan Beckingham, Ay Lin Kho, Thomas Kampourakis, Elisabeth Ehler

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Myosin binding protein-C (MyBP-C) is a multidomain protein that regulates muscle contraction. Mutations in MYBPC3, the gene encoding for the cardiac variant (henceforth called cMyBP-C), are amongst the most frequent causes of hypertrophic cardiomyopathy. Most mutations lead to a truncated version of cMyBP-C, which is most likely unstable. However, missense mutations have also been reported, which tend to cluster in the central domains of the cMyBP-C molecule. This suggests that these central domains are more than just a passive spacer between the better characterized N- and C-terminal domains. Here, we investigated the potential impact of four different missense mutations, E542Q, G596R, N755K, and R820Q, which are spread over the domains C3 to C6, on the function of MyBP-C on both the isolated protein level and in cardiomyocytes in vitro. Effect on domain stability, interaction with thin filaments, binding to myosin, and subcellular localization behavior were assessed. Our studies show that these missense mutations result in slightly different phenotypes at the molecular level, which are mutation specific. The expected functional readout of each mutation provides a valid explanation for why cMyBP-C fails to work as a brake in the regulation of muscle contraction, which eventually results in a hypertrophic cardiomyopathy phenotype. We conclude that missense mutations in cMyBP-C must be evaluated in context of their domain localization, their effect on interaction with thin filaments and myosin, and their effect on protein stability to explain how they lead to disease.

Original languageEnglish
Article number105511
JournalJournal of Biological Chemistry
Volume300
Issue number1
DOIs
StatePublished - Jan 2024

Bibliographical note

Publisher Copyright:
© 2023 The Authors

Keywords

  • ATPase
  • cardiomyopathy
  • cell culture
  • cytoskeleton
  • heart
  • microscopic imaging
  • mutant
  • protein stability

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Missense mutations in the central domains of cardiac myosin binding protein-C and their potential contribution to hypertrophic cardiomyopathy'. Together they form a unique fingerprint.

Cite this