TY - JOUR
T1 - Mms19 protein functions in nucleotide excision repair by sustaining an adequate cellular concentration of the TFIIH component Rad3
AU - Kou, Haiping
AU - Zhou, Ying
AU - Gorospe, R. M.Charlotte
AU - Wang, Zhigang
PY - 2008/10/14
Y1 - 2008/10/14
N2 - Nucleotide excision repair (NER) is a major cellular defense mechanism against DNA damage. We have investigated the role of Mms19 in NER in the yeast Saccharomyces cerevisiae. NER was deficient in the mms19 deletion mutant cell extracts, which was complemented by the NER/transcription factor TFIIH, but not by purified Mms19 protein. In mms19 mutant cells, protein levels of the core TFIIH component Rad3 (XPD homologue) and Ssl2 (XPB homologue) were significantly reduced by up to 3.5- and 2.2-fold, respectively. The other four essential subunits of the core TFIIH, Tfb1, Tfb2, Ssl1, and Tfb4, and the TFIIK subunits Tfb3, Kin28, and Ccl1 of the holo TFIIH were not much affected by Mms19. Elevating Rad3 protein concentration by overexpressing the protein from a plasmid under the GAL1 promoter control restored proficient NER in mms19 mutant cells, as indicated by complementation for UV sensitivity. Overexpression of Ssl2 had no effect on repair. Overexpression of Rad3, Ssl2, or both proteins, however, could not correct the temperature-sensitive growth defect of mms19 mutant cells. These results show that Mms19 functions in NER by sustaining an adequate cellular concentration of the TFIIH component Rad3 and suggest that Mms19 has distinct and separable functions in NER and cell growth, thus implicating Mms19 protein as a novel multifunctional regulator in cells.
AB - Nucleotide excision repair (NER) is a major cellular defense mechanism against DNA damage. We have investigated the role of Mms19 in NER in the yeast Saccharomyces cerevisiae. NER was deficient in the mms19 deletion mutant cell extracts, which was complemented by the NER/transcription factor TFIIH, but not by purified Mms19 protein. In mms19 mutant cells, protein levels of the core TFIIH component Rad3 (XPD homologue) and Ssl2 (XPB homologue) were significantly reduced by up to 3.5- and 2.2-fold, respectively. The other four essential subunits of the core TFIIH, Tfb1, Tfb2, Ssl1, and Tfb4, and the TFIIK subunits Tfb3, Kin28, and Ccl1 of the holo TFIIH were not much affected by Mms19. Elevating Rad3 protein concentration by overexpressing the protein from a plasmid under the GAL1 promoter control restored proficient NER in mms19 mutant cells, as indicated by complementation for UV sensitivity. Overexpression of Ssl2 had no effect on repair. Overexpression of Rad3, Ssl2, or both proteins, however, could not correct the temperature-sensitive growth defect of mms19 mutant cells. These results show that Mms19 functions in NER by sustaining an adequate cellular concentration of the TFIIH component Rad3 and suggest that Mms19 has distinct and separable functions in NER and cell growth, thus implicating Mms19 protein as a novel multifunctional regulator in cells.
KW - DNA damage
KW - DNA repair
KW - Repair regulation
KW - Transcription factor
UR - http://www.scopus.com/inward/record.url?scp=57349195109&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=57349195109&partnerID=8YFLogxK
U2 - 10.1073/pnas.0710736105
DO - 10.1073/pnas.0710736105
M3 - Article
C2 - 18836076
AN - SCOPUS:57349195109
SN - 0027-8424
VL - 105
SP - 15714
EP - 15719
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 41
ER -