Abstract
The effects of an amphiphilic CO2 hydration catalyst (C3P) on the physical properties of aqueous monoethanolamine (MEA) solutions were studied using molecular simulations and verified experimentally. Adding 2.7-27.7 g/L of C3P in 30 wt % MEA aqueous solution did not significantly affect the solution viscosity, surface tension, or CO2 diffusivity. These results confirm that the previously reported increase in CO2 mass transfer by C3P is due to CO2 hydration catalysis and not due to changes in the physical properties of the MEA solution. Additional simulations indicate that the catalyst molecules tend to aggregate in MEA solution and are preferentially adsorbed at the gas-liquid interface region. For the catalyst molecules remaining in the bulk solution, the local concentrations of CO2 and MEA in the area immediately around the catalyst are increased while the local water concentration is decreased, relative to their concentrations in the rest of the bulk MEA solution.
Original language | English |
---|---|
Pages (from-to) | 11644-11651 |
Number of pages | 8 |
Journal | Industrial and Engineering Chemistry Research |
Volume | 56 |
Issue number | 40 |
DOIs | |
State | Published - Oct 11 2017 |
Bibliographical note
Funding Information:This technical effort was performed in support of the National Energy Technology Laboratory’s ongoing research in computational chemistry under the RES Contract DE-FE0004000. This project was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with AECOM.
Publisher Copyright:
© 2017 American Chemical Society.
ASJC Scopus subject areas
- Chemistry (all)
- Chemical Engineering (all)
- Industrial and Manufacturing Engineering