Molecular Structure and Organization of the Human Manganese Superoxide Dismutase Gene

X. Steven Wan, Madhav N. Devalaraja, Daret K. St. Clair

Research output: Contribution to journalArticlepeer-review

197 Scopus citations


Human manganese Superoxide dismutase (MnSOD) is one of the major cellular defense enzymes that protects against toxic effects of Superoxide radicals. Overexpression of human MnSOD has been shown to inhibit radiation-induced neoplastic transformation, suppress malignancy of cancer cells, and increase tolerance to various toxic agents. To elucidate the human MnSOD gene structure for identification of potential regulatory elements, we isolated five λ clones from a normal human genomic DNA library and sequenced the largest clone containing the entire human MnSOD gene. The results demonstrated that human MnSOD is a single-copy gene consisting of five exons interrupted by four introns with typical splice junctions. A distinctive transcription initiation site was identified 74 bp upstream from the translation start site. This transcription initiation site is preceded by a G + C-rich (78%) promoter region containing a cluster of seven SP1 and three AP2 consensus sequences with no TATA box or CAAT box. The 3′-flanking region of the MnSOD gene contains one NF-κB consensus sequence. The presence of SP1, AP2, and NF-κB consensus sequences suggests that these potential regulatory elements may play a role in the regulation of human MnSOD gene expression.

Original languageEnglish
Pages (from-to)1127-1136
Number of pages10
JournalDNA and Cell Biology
Issue number11
StatePublished - Nov 1994

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Cell Biology


Dive into the research topics of 'Molecular Structure and Organization of the Human Manganese Superoxide Dismutase Gene'. Together they form a unique fingerprint.

Cite this