TY - JOUR
T1 - Monoclonal antibody against the ectodomain of E-cadherin (DECMA-1) suppresses breast carcinogenesis
T2 - Involvement of the HER/PI3K/Akt/mTOR and IAP pathways
AU - Brouxhon, Sabine M.
AU - Kyrkanides, Stephanos
AU - Teng, Xiaofei
AU - Raja, Veena
AU - O'Banion, M. Kerry
AU - Clarke, Robert
AU - Byers, Stephen
AU - Silberfeld, Andrew
AU - Tornos, Carmen
AU - Ma, Li
PY - 2013/6/15
Y1 - 2013/6/15
N2 - Purpose: Although targeted therapies against HER2 have been one of the most successful therapeutic strategies for breast cancer, patients eventually developed acquired resistance from compensatory upregulation of alternate HERs and mitogen-activated protein kinase-phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling. As we and others have shown that the soluble ectodomain fragment of E-cadherin exerts prooncogenic effects via HER1/2-mediated binding and activation of downstream prosurvival pathways, we explored whether targeting this ectodomain [DECMA-1 monoclonal antibody (mAb)] was effective in the treatment of HER2-positive (HER2+) breast cancers. Experimental Design: MMTV-PyMT transgenic mice and HER2+/E-cadherin-positive MCF-7 and BT474 trastuzumab-resistant (TtzmR) cells were treated with the DECMA-1 mAb. Antitumor responses were assessed by bromodeoxyuridine incorporation, apoptosis, and necrosis. The underlying intracellular prooncogenic pathways were explored using subcellular fractionation, immunoprecipitation, fluorescence microscopy, and immunoblotting. Results: Treatment with DECMA-1 mAb significantly delayed tumor onset and attenuated tumor burden in MMTV-PyMT mice by reducing tumor cell proliferation and inducing apoptosis without any detectable cytotoxicity to mice or end-organs. In vitro treatment of MCF-7 and BT474 TtzmR cells reduced proliferation and induced cancer cell apoptosis. Importantly, this inhibition of breast tumorigenesis was due to concomitant downregulation, via ubiquitin-mediated degradation through the lysosome and proteasome pathways, of all HER family members, components of downstream PI3K/Akt/mTOR prosurvival signaling and suppression of inhibitor of apoptosis proteins. Conclusions: Our results establish that the E-cadherin ectodomain-specific mAb DECMA-1 inhibits Ecad+/HER2+ breast cancers by hindering tumor growth and inducing apoptosis via downregulation of key oncogenic pathways involved in trastuzumab resistance, thereby establishing a novel therapeutic platform for the treatment of HER2 + breast cancers.
AB - Purpose: Although targeted therapies against HER2 have been one of the most successful therapeutic strategies for breast cancer, patients eventually developed acquired resistance from compensatory upregulation of alternate HERs and mitogen-activated protein kinase-phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling. As we and others have shown that the soluble ectodomain fragment of E-cadherin exerts prooncogenic effects via HER1/2-mediated binding and activation of downstream prosurvival pathways, we explored whether targeting this ectodomain [DECMA-1 monoclonal antibody (mAb)] was effective in the treatment of HER2-positive (HER2+) breast cancers. Experimental Design: MMTV-PyMT transgenic mice and HER2+/E-cadherin-positive MCF-7 and BT474 trastuzumab-resistant (TtzmR) cells were treated with the DECMA-1 mAb. Antitumor responses were assessed by bromodeoxyuridine incorporation, apoptosis, and necrosis. The underlying intracellular prooncogenic pathways were explored using subcellular fractionation, immunoprecipitation, fluorescence microscopy, and immunoblotting. Results: Treatment with DECMA-1 mAb significantly delayed tumor onset and attenuated tumor burden in MMTV-PyMT mice by reducing tumor cell proliferation and inducing apoptosis without any detectable cytotoxicity to mice or end-organs. In vitro treatment of MCF-7 and BT474 TtzmR cells reduced proliferation and induced cancer cell apoptosis. Importantly, this inhibition of breast tumorigenesis was due to concomitant downregulation, via ubiquitin-mediated degradation through the lysosome and proteasome pathways, of all HER family members, components of downstream PI3K/Akt/mTOR prosurvival signaling and suppression of inhibitor of apoptosis proteins. Conclusions: Our results establish that the E-cadherin ectodomain-specific mAb DECMA-1 inhibits Ecad+/HER2+ breast cancers by hindering tumor growth and inducing apoptosis via downregulation of key oncogenic pathways involved in trastuzumab resistance, thereby establishing a novel therapeutic platform for the treatment of HER2 + breast cancers.
UR - http://www.scopus.com/inward/record.url?scp=84879486621&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84879486621&partnerID=8YFLogxK
U2 - 10.1158/1078-0432.CCR-12-2747
DO - 10.1158/1078-0432.CCR-12-2747
M3 - Article
C2 - 23620408
AN - SCOPUS:84879486621
SN - 1078-0432
VL - 19
SP - 3234
EP - 3246
JO - Clinical Cancer Research
JF - Clinical Cancer Research
IS - 12
ER -