Abstract
Using an ablative thermal/material response code, the importance of three-dimensionality for modeling ablative test-article is addressed. In particular, the simulation of the pyrolysis gas flow inside a porous material is presented, using two different geometries. The effects of allowing the gas to flow out of the side wall are especially highlighted. Results show that the flow inside the test-article is complex, and that the 0D or 1D assumption made in most Material Response (MR) codes might not be valid for certain geometries.
Original language | English |
---|---|
State | Published - 2013 |
Event | 44th AIAA Thermophysics Conference - San Diego, CA, United States Duration: Jun 24 2013 → Jun 27 2013 |
Conference
Conference | 44th AIAA Thermophysics Conference |
---|---|
Country/Territory | United States |
City | San Diego, CA |
Period | 6/24/13 → 6/27/13 |
ASJC Scopus subject areas
- Aerospace Engineering
- Mechanical Engineering
- Condensed Matter Physics