TY - JOUR
T1 - Muscle-Specific Mitochondrial Functionality and Its Influence on Fresh Beef Color Stability
AU - Mancini, Richard A.
AU - Belskie, Kaylin
AU - Suman, Surendranath P.
AU - Ramanathan, Ranjith
N1 - Publisher Copyright:
© 2018 Institute of Food Technologists®
PY - 2018/8
Y1 - 2018/8
N2 - Abstract: Fresh beef color stability is a muscle-specific trait. Mitochondria remain biochemically active in postmortem beef muscles and influence meat color. Although several intrinsic factors governing muscle-specific beef color have been studied extensively, the role of mitochondrial functionality in muscle-dependent color stability is yet to be examined. Therefore, the objective of this study was to examine mitochondrial oxygen consumption rate (OCR), mitochondrial metmyoglobin reducing activity (MMRA), and instrumental color attributes in beef Longissimus lumborum (LL) and Psoas major (PM) during retail display. Using a split-plot design, six (n = 6) beef LL and PM muscles were fabricated into 2.54-cm-thick steaks, packaged in polyvinylchloride overwrap, and randomly assigned to instrumental color measurement for six days and mitochondrial isolation for days 0, 1, 3, or 5 of display at 4 °C. Mitochondria isolated from steaks were used to assess the effects of muscle and display time on OCR and MMRA. The PM steaks were less color-stable (p < 0.05) during display compared with the LL counterparts. For both muscles, OCR decreased during display, albeit the decrease was more rapid in PM than in the LL. Similarly, MMRA decreased during display for the LL and PM. However, this decrease was less (p < 0.05) for mitochondria from LL steaks, which were more resistant to display-mediated effects on OCR and MMRA. These results indicated that the muscle-specific differences in mitochondrial activity may contribute partially to the variations in color stability of beef LL and PM muscles. Practical Application: During retail display tenderloin steaks packaged in PVC overwrap discolor quicker than strip loin steaks. This research determines the basis for muscle-specific differences in color stability. The results indicate that mitochondria present in tenderloin lose its functionality faster than strip loin mitochondria. Developing strategies to minimize muscle-specific differences in mitochondrial changes can increase color stability and value of fresh beef.
AB - Abstract: Fresh beef color stability is a muscle-specific trait. Mitochondria remain biochemically active in postmortem beef muscles and influence meat color. Although several intrinsic factors governing muscle-specific beef color have been studied extensively, the role of mitochondrial functionality in muscle-dependent color stability is yet to be examined. Therefore, the objective of this study was to examine mitochondrial oxygen consumption rate (OCR), mitochondrial metmyoglobin reducing activity (MMRA), and instrumental color attributes in beef Longissimus lumborum (LL) and Psoas major (PM) during retail display. Using a split-plot design, six (n = 6) beef LL and PM muscles were fabricated into 2.54-cm-thick steaks, packaged in polyvinylchloride overwrap, and randomly assigned to instrumental color measurement for six days and mitochondrial isolation for days 0, 1, 3, or 5 of display at 4 °C. Mitochondria isolated from steaks were used to assess the effects of muscle and display time on OCR and MMRA. The PM steaks were less color-stable (p < 0.05) during display compared with the LL counterparts. For both muscles, OCR decreased during display, albeit the decrease was more rapid in PM than in the LL. Similarly, MMRA decreased during display for the LL and PM. However, this decrease was less (p < 0.05) for mitochondria from LL steaks, which were more resistant to display-mediated effects on OCR and MMRA. These results indicated that the muscle-specific differences in mitochondrial activity may contribute partially to the variations in color stability of beef LL and PM muscles. Practical Application: During retail display tenderloin steaks packaged in PVC overwrap discolor quicker than strip loin steaks. This research determines the basis for muscle-specific differences in color stability. The results indicate that mitochondria present in tenderloin lose its functionality faster than strip loin mitochondria. Developing strategies to minimize muscle-specific differences in mitochondrial changes can increase color stability and value of fresh beef.
KW - beef
KW - color
KW - mitochondria
KW - myoglobin
KW - oxygen consumption
UR - http://www.scopus.com/inward/record.url?scp=85051420349&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85051420349&partnerID=8YFLogxK
U2 - 10.1111/1750-3841.14219
DO - 10.1111/1750-3841.14219
M3 - Article
C2 - 30059143
AN - SCOPUS:85051420349
SN - 0022-1147
VL - 83
SP - 2077
EP - 2082
JO - Journal of Food Science
JF - Journal of Food Science
IS - 8
ER -