Mutations at Tyrosine 88, Lysine 92 and Tyrosine 470 of Human Dopamine Transporter Result in an Attenuation of HIV-1 Tat-Induced Inhibition of Dopamine Transport

Narasimha M. Midde, Yaxia Yuan, Pamela M. Quizon, Wei Lun Sun, Xiaoqin Huang, Chang Guo Zhan, Jun Zhu

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

HIV-1 transactivator of transcription (Tat) protein disrupts the dopamine (DA) neurotransmission by inhibiting DA transporter (DAT) function, leading to increased neurocognitive impairment in HIV-1 infected individuals. Through integrated computational modeling and pharmacological studies, we have demonstrated that mutation of tyrosine470 (Y470H) of human DAT (hDAT) attenuates Tat-induced inhibition of DA uptake by changing the transporter conformational transitions. The present study examined the functional influences of other substitutions at tyrosine470 (Y470F and Y470A) and tyrosine88 (Y88F) and lysine92 (K92M), two other relevant residues for Tat binding to hDAT, in Tat-induced inhibitory effects on DA transport. Y88F, K92M and Y470A attenuated Tat-induced inhibition of DA transport, implicating the functional relevance of these residues for Tat binding to hDAT. Compared to wild type hDAT, Y470A and K92M but not Y88F reduced the maximal velocity of [3H]DA uptake without changes in the Km. Y88F and K92M enhanced IC50 values for DA inhibition of [3H]DA uptake and [3H]WIN35,428 binding but decreased IC50 for cocaine and GBR12909 inhibition of [3H]DA uptake, suggesting that these residues are critical for substrate and these inhibitors. Y470F, Y470A, Y88F and K92M attenuated zinc-induced increase of [3H]WIN35,428 binding. Moreover, only Y470A and K92M enhanced DA efflux relative to wild type hDAT, suggesting mutations of these residues differentially modulate transporter conformational transitions. These results demonstrate Tyr88 and Lys92 along with Tyr470 as functional recognition residues in hDAT for Tat-induced inhibition of DA transport and provide mechanistic insights into identifying target residues on the DAT for Tat binding.

Original languageEnglish
Pages (from-to)122-135
Number of pages14
JournalJournal of NeuroImmune Pharmacology
Volume10
Issue number1
DOIs
StatePublished - Feb 20 2015

Bibliographical note

Publisher Copyright:
© 2015, Springer Science+Business Media New York.

Keywords

  • Allosteric modulation
  • Computational modeling
  • Dopamine transporter
  • HIV-1 Tat
  • Mutation
  • Uptake

ASJC Scopus subject areas

  • Neuroscience (miscellaneous)
  • Immunology and Allergy
  • Immunology
  • Pharmacology

Fingerprint

Dive into the research topics of 'Mutations at Tyrosine 88, Lysine 92 and Tyrosine 470 of Human Dopamine Transporter Result in an Attenuation of HIV-1 Tat-Induced Inhibition of Dopamine Transport'. Together they form a unique fingerprint.

Cite this