Myofilament Function 2022 Thin filament regulation of cardiac muscle power output: Implications for targets to improve human failing hearts

Laurin M. Hanft, Joel C. Robinett, Theodore J. Kalogeris, Kenneth S. Campbell, Brandon J. Biesiadecki, Kerry S. McDonald

Research output: Contribution to journalArticlepeer-review


The heart’s pumping capacity is determined by myofilament power generation. Power is work done per unit time and measured as the product of force and velocity. At a sarcomere level, these contractile properties are linked to the number of attached cross-bridges and their cycling rate, and many signaling pathways modulate one or both factors. We previously showed that power is increased in rodent permeabilized cardiac myocytes following PKA-mediated phosphorylation of myofibrillar proteins. The current study found that that PKA increased power by ∼30% in permeabilized cardiac myocyte preparations (n = 8) from human failing hearts. To address myofilament molecular specificity of PKA effects, mechanical properties were measured in rat permeabilized slow-twitch skeletal muscle fibers before and after exchange of endogenous slow skeletal troponin with recombinant human Tn complex that contains cardiac (c)TnT, cTnC and either wildtype (WT) cTnI or pseudo-phosphorylated cTnI at sites Ser23/24Asp, Tyr26Glu, or the combinatorial Ser23/24Asp and Tyr26Glu. We found that cTnI Ser23/24Asp, Tyr26Glu, and combinatorial Ser23/24Asp and Tyr26Glu were sufficient to increase power by ∼20%. Next, we determined whether pseudo-phosphorylated cTnI at Ser23/24 was sufficient to increase power in cardiac myocytes from human failing hearts. Following cTn exchange that included cTnI Ser23/24Asp, power output increased ∼20% in permeabilized cardiac myocyte preparations (n = 6) from the left ventricle of human failing hearts. These results implicate cTnI N-terminal phosphorylation as a molecular regulator of myocyte power and could serve as a regional target for small molecule therapy to unmask myocyte power reserve capacity in human failing hearts.

Original languageEnglish
Article numbere202213290
JournalJournal of General Physiology
Issue number5
StatePublished - May 1 2023

Bibliographical note

Funding Information:
This work was supported by National Heart, Lung, and Blood Institute grants (R01-HL148785 to K.S. McDonald, R01 HL149164, K.S. Campbell, and R01 HL114940 to B.J. Biesiadecki). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Publisher Copyright:
© 2023 Hanft et al.

ASJC Scopus subject areas

  • Physiology


Dive into the research topics of 'Myofilament Function 2022 Thin filament regulation of cardiac muscle power output: Implications for targets to improve human failing hearts'. Together they form a unique fingerprint.

Cite this