Abstract
We report the structural and optical properties of nanoscale Sr2IrO4 freestanding thin films fabricated using a water-soluble Sr3Al2O6 layer. The coherent lattice structure, phonon modes, two-magnon Raman scattering, and optical absorption spectra of the Sr2IrO4 nanomembrane are analogous to those of the layered iridate epitaxial thin films and single crystals. Remarkably, the formation of 3-unit-cell-thick SrIrO3 and interfacial composite layers alleviates the antiphase boundaries at the Sr2IrO4/Sr3Al2O6 interface, resulting in structurally robust nanomembranes. Our experimental results show that this freestanding thin-film approach of layered oxides can provide techniques for tuning or realizing unprecedented states beyond conventional thin-film methods, suggesting a pathway in achieving flexible layered-oxide electronics.
Original language | English |
---|---|
Pages (from-to) | 6310-6315 |
Number of pages | 6 |
Journal | ACS Applied Nano Materials |
Volume | 3 |
Issue number | 7 |
DOIs | |
State | Published - Jul 24 2020 |
Bibliographical note
Funding Information:We acknowledge the support of a National Science Foundation (NSF) Grant No. DMR-1454200 for thin-film synthesis and characterization. M.Z. and J.H. acknowledge support by NSF, under Grant No. DMR-1847964. Electron microscopy was performed at the Center for Electron Microscopy and Analysis at The Ohio State University. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. A.S. acknowledges the support from the Alexander von Humboldt Foundation (Research Fellowship for Experienced Researchers) for Raman spectroscopy experiments.
Publisher Copyright:
Copyright © 2020 American Chemical Society.
Keywords
- STEM
- SrIrO
- freestanding thin films
- interface
- layered oxides
- strain
ASJC Scopus subject areas
- Materials Science (all)