TY - JOUR
T1 - Nanomolar affinity small molecule correctors of defective ΔF508-CFTR chloride channel gating
AU - Yang, Hong
AU - Shelat, Anang A.
AU - Guy, R. Kiplin
AU - Gopinath, Vadiraj S.
AU - Ma, Tonghui
AU - Du, Kai
AU - Lukacs, Gergely L.
AU - Taddei, Alessandro
AU - Folli, Chiara
AU - Pedemonte, Nicoletta
AU - Galietta, Luis J.V.
AU - Verkman, A. S.
PY - 2003/9/12
Y1 - 2003/9/12
N2 - Deletion of Phe-508 (ΔF508) is the most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) causing cystic fibrosis. ΔF508-CFTR has defects in both channel gating and endoplasmic reticulum-to-plasma membrane processing. We identified six novel classes of high affinity potentiators of defective ΔF508-CFTR Cl- channel gating by screening 100,000 diverse small molecules. Compounds were added 15 min prior to assay of iodide uptake in epithelial cells co-expressing ΔF508-CFTR and a high sensitivity halide indicator (YFP-H148Q/I152L) in which ΔF508-CFTR was targeted to the plasma membrane by culture at 27 °C for 24 h. Thirty-two compounds with submicromolar activating potency were identified; most had tetrahydrobenzothiophene, benzofuran, pyramidinetrione, dihydropyridine, and anthraquinone core structures (360-480 daltons). Further screening of > 1000 structural analogs revealed tetrahydrobenzothiophenes that activated ΔF508-CFTR Cl- conductance reversibly with Kd < 100 nM. Single-cell voltage clamp analysis showed characteristic CFTR currents after ΔF508-CFTR activation. Activation required low concentrations of a cAMP agonist, thus mimicking the normal physiological response. A Bayesian computational model was developed using tetrahydrobenzothiophene structure-activity data, yielding insight into the physical character and structural features of active and inactive potentiators and successfully predicting the activity of structural analogs. Efficient potentiation of defective ΔF508-CFTR gating was also demonstrated in human bronchial epithelial cells from a ΔF508 cystic fibrosis subject after 27 °C temperature rescue. In conjunction with correctors of defective ΔF508-CFTR processing, small molecule potentiators of defective ΔF508-CFTR gating may be useful for therapy of cystic fibrosis caused by the ΔF508 mutation.
AB - Deletion of Phe-508 (ΔF508) is the most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) causing cystic fibrosis. ΔF508-CFTR has defects in both channel gating and endoplasmic reticulum-to-plasma membrane processing. We identified six novel classes of high affinity potentiators of defective ΔF508-CFTR Cl- channel gating by screening 100,000 diverse small molecules. Compounds were added 15 min prior to assay of iodide uptake in epithelial cells co-expressing ΔF508-CFTR and a high sensitivity halide indicator (YFP-H148Q/I152L) in which ΔF508-CFTR was targeted to the plasma membrane by culture at 27 °C for 24 h. Thirty-two compounds with submicromolar activating potency were identified; most had tetrahydrobenzothiophene, benzofuran, pyramidinetrione, dihydropyridine, and anthraquinone core structures (360-480 daltons). Further screening of > 1000 structural analogs revealed tetrahydrobenzothiophenes that activated ΔF508-CFTR Cl- conductance reversibly with Kd < 100 nM. Single-cell voltage clamp analysis showed characteristic CFTR currents after ΔF508-CFTR activation. Activation required low concentrations of a cAMP agonist, thus mimicking the normal physiological response. A Bayesian computational model was developed using tetrahydrobenzothiophene structure-activity data, yielding insight into the physical character and structural features of active and inactive potentiators and successfully predicting the activity of structural analogs. Efficient potentiation of defective ΔF508-CFTR gating was also demonstrated in human bronchial epithelial cells from a ΔF508 cystic fibrosis subject after 27 °C temperature rescue. In conjunction with correctors of defective ΔF508-CFTR processing, small molecule potentiators of defective ΔF508-CFTR gating may be useful for therapy of cystic fibrosis caused by the ΔF508 mutation.
UR - http://www.scopus.com/inward/record.url?scp=0042317111&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0042317111&partnerID=8YFLogxK
U2 - 10.1074/jbc.M303098200
DO - 10.1074/jbc.M303098200
M3 - Article
C2 - 12832418
AN - SCOPUS:0042317111
SN - 0021-9258
VL - 278
SP - 35079
EP - 35085
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 37
ER -