Negative stiffness coefficients for magnetic actuators using Laplace's equation

Lyndon S. Stephens, Mark A. Casemore

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Magnetic bearings offer high speed and low power losses as compared to film riding and rolling element bearings. Significant efforts are underway to apply magnetic bearings to gas turbines and jet aircraft engines. Negative stiffness coefficients for magnetic actuators can have a significant impact on shaft rotordynamics. These coefficients are typically computed as the sensitivity of a magnetic force expression derived from a lumped parameter reluctance network. However, as the complexity of magnetic actuator designs increases, the reluctance network method may become impractical for, or even incapable of, coefficient determination. In this paper, an alternative method is presented for determination of negative stiffness coefficients for a large class of magnetic actuators. The method solves the Dirichlet boundary value problem (BVP) for the magnetomotive force (MMF) in the actuator air gap, subject to periodic boundary conditions that can be represented by Fourier series. A conformal transformation to bipolar coordinates is used that results in a BVP that is solvable using separation of variables. Negative stiffness coefficients are presented and the method is benchmarked against well-known solutions using the reluctance network method.

Original languageEnglish
Title of host publicationManufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award; General
ISBN (Electronic)9780791878613
DOIs
StatePublished - 1999
EventASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition, GT 1999 - Indianapolis, United States
Duration: Jun 7 1999Jun 10 1999

Publication series

NameProceedings of the ASME Turbo Expo
Volume4

Conference

ConferenceASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition, GT 1999
Country/TerritoryUnited States
CityIndianapolis
Period6/7/996/10/99

Bibliographical note

Publisher Copyright:
Copyright © 1999 by ASME.

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'Negative stiffness coefficients for magnetic actuators using Laplace's equation'. Together they form a unique fingerprint.

Cite this