Abstract
A neural network was developed that utilizes both clinical and imaging (CT and MRI) data to predict posterior fossa tumor (PFT) type. Data from 33 children with PFTs were used to develop and test the system. When all desired information was available, the network was able to correctly classify 85.7% of the tumors. In cases with incomplete data, it was able to correctly classify 72.7% of the tumors. In both instances, the diagnoses made by the network were more likely to be correct than those made by the neuroradiologists.
Original language | English |
---|---|
Pages (from-to) | 8-15 |
Number of pages | 8 |
Journal | Pediatric Neurosurgery |
Volume | 40 |
Issue number | 1 |
DOIs | |
State | Published - 2004 |
Keywords
- Children
- Expert system
- Neural network
- Posterior fossa tumors
ASJC Scopus subject areas
- Pediatrics, Perinatology, and Child Health
- Surgery
- Clinical Neurology