Neurocognitive function after cardiac surgery from phenotypes to mechanisms

Miles Berger, Niccolò Terrando, S. Kendall Smith, Jeffrey N. Browndyke, Mark F. Newman, Joseph P. Mathew

Research output: Contribution to journalReview articlepeer-review

105 Citations (SciVal)


For half a century, it has been known that some patients experience neurocognitive dysfunction after cardiac surgery; however, defining its incidence, course, and causes remains challenging and controversial. Various terms have been used to describe neurocognitive dysfunction at different times after cardiac surgery, ranging from “postoperative delirium” to “postoperative cognitive dysfunction or decline.” Delirium is a clinical diagnosis included in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). Postoperative cognitive dysfunction is not included in the DSM-5 and has been heterogeneously defined, though a recent international nomenclature effort has proposed standardized definitions for it. Here, the authors discuss pathophysiologic mechanisms that may underlie these complications, review the literature on methods to prevent them, and discuss novel approaches to understand their etiology that may lead to novel treatment strategies. Future studies should measure both delirium and postoperative cognitive dysfunction to help clarify the relationship between these important postoperative complications.

Original languageEnglish
Pages (from-to)829-851
Number of pages23
Issue number4
StatePublished - 2018

Bibliographical note

Funding Information:
Dr. Berger acknowledges funding from Minnetronix, Inc. (St. Paul, Minnesota), for a project unrelated to the subject matter of this review, and has received material support (i.e., electroencephalogram monitors) for a postoperative recovery study in older adults from Masimo, Inc. (Irvine, California). Dr. Berger has also received legal consulting fees related to postoperative cognition in an older adult. Dr. Browndyke acknowledges funding from Claret Medical, Inc. (Santa Rosa, California). The other authors declare no competing interests.

Funding Information:
Supported by a Developing Research Excellence in Anesthesia Management (DREAM) Innovation Grant from Duke Anesthesiology (Durham, North Carolina), National Institutes of Health (Bethesda, Maryland) T32 grant No. GM08600, an International Anesthesia Research Society (IARS; San Francisco, California) Mentored Research Award, National Institutes of Health R03 AG050918, National Institutes of Health K76 AG057022, a Jahnigen Scholars Fellowship award, a small project grant from the American Geriatrics Society (New York, New York), and additional support from National Institutes of Health P30AG028716 (to Dr. Berger); a Duke Institute of Brain Science Incubator Award (Durham, North Carolina), a DREAM Innovation Grant from Duke Anesthesiology, and National Institutes of Health grant No. R01AG057525 (to Dr. Terrando); National Institutes of Health grant Nos. U01-HL088942, R01-AG042599, R01-HL130443, and R01-HL122836 (to Dr. Brown-dyke); National Institutes of Health R01 grant Nos. HL069081, HL054316, AG016762, and AG09663 (to Dr. Newman); and National Institutes of Health grant Nos. R21-HL109971, R21-HL108280, R01-HL096978, and R01-HL130443 (to Dr. Mathew).

Publisher Copyright:
© 2018 Lippincott Williams and Wilkins. All Rights Reserved.

ASJC Scopus subject areas

  • Anesthesiology and Pain Medicine


Dive into the research topics of 'Neurocognitive function after cardiac surgery from phenotypes to mechanisms'. Together they form a unique fingerprint.

Cite this