Nitric oxide synthase inhibition does not affect regulation of muscle sympathetic nerve activity during head-up tilt

Jian Cui, Rong Zhang, Thad E. Wilson, Sarah Witkowski, Craig G. Crandall, Benjamin D. Levine

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

To test the hypothesis that systemic inhibition of nitric oxide (NO) synthase does not alter the regulation of sympathetic outflow during head-up tilt in humans, in eight healthy subjects NO synthase was blocked by intravenous infusion of NG-monomethyl-L-arginine (L-NMMA). Blood pressure, heart rate, cardiac output, total peripheral resistance (TPR), and muscle sympathetic nerve activity (MSNA) were recorded in the supine position and during 60° head-up tilt. In the supine position, infusion of L-NMMA increased blood pressure, via increased TPR, and inhibited MSNA. However, the increase in MSNA evoked by head-up tilt during L-NMMA infusion (change in burst rate: 24 ± 4 bursts/min; change in total activity: 209 ± 36 U/min) was similar to that during head-up tilt without L-NMMA (change in burst rate: 23 ± 4 bursts/min; change in total activity: 251 ± 52 U/min, n = 6, all P > 0.05). Moreover, changes in TPR and heart rate during head-up tilt were virtually identical between the two conditions. These results suggest that systemic inhibition of NO synthase with L-NMMA does not affect the regulation of sympathetic outflow and vascular resistance during head-up tilt in humans.

Original languageEnglish
Pages (from-to)H2105-H2110
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume285
Issue number5 54-5
DOIs
StatePublished - Nov 2003

Keywords

  • Autonomic
  • Baroreceptors
  • Microneurography
  • Nervous system
  • Orthostatic

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Nitric oxide synthase inhibition does not affect regulation of muscle sympathetic nerve activity during head-up tilt'. Together they form a unique fingerprint.

Cite this