TY - JOUR
T1 - NK cell natural cytotoxicity and IFN-γ production are not always coordinately regulated
T2 - Engagement of DX9 KIR+ NK cells by HLA-B7 variants and target cells
AU - Kurago, Zoya B.
AU - Lutz, Charles T.
AU - Smith, Kelly D.
AU - Colonna, Marco
N1 - Copyright:
Copyright 2007 Elsevier B.V., All rights reserved.
PY - 1998/2/15
Y1 - 1998/2/15
N2 - DX9 mAb-binding killer cell-inhibitory receptors (KIR) recognize HLA-B molecules that express the Bw4 public serologic epitope. We assessed DX9+ NK cell fine specificity recognition of HLA-B7 variants and HLA-B27 alleles by 51Cr release natural cytotoxicity assays and by flow cytometry and enzyme- linked immunospot (ELISPOT) IFN-γ synthesis and release assays. 721.221 target cell expression of Bw4+ HLA-B27 alleles specifically inhibited DX9+ NK cell natural cytotoxicity and IFN-γ synthesis and release. A triple substitution of HLA-B7 at residues 80, 82, and 83 known to induce expression of the Bw4 serologic epitope also specifically inhibited DX9+ NK cell natural cytotoxicity and IFN-γ responses. Single HLA-B7 amino acid substitution variants were recognized in the same decreasing rank order by DX9+ NK cells and Bw4-reactive mAbs: G83R > R82L > N80T = HLA-B7. Natural cytotoxicity inhibition was reversed by the presence of blocking DX9 mAb. Natural cytotoxicity and IFN-γ production were coordinately regulated by a panel of HLA-B7 variants expressed on 721.221 cells, suggesting that these two effector functions are inhibited by the same K/R-mediated signaling mechanisms. In contrast, some NK cell clones killed 721.221 and K562 target cells equally well but released much more IFN-γ in response to K562 target cells. Differential regulation of natural cytotoxicity and IFN-γ release shows that NK cell effector functions respond to distinct signals.
AB - DX9 mAb-binding killer cell-inhibitory receptors (KIR) recognize HLA-B molecules that express the Bw4 public serologic epitope. We assessed DX9+ NK cell fine specificity recognition of HLA-B7 variants and HLA-B27 alleles by 51Cr release natural cytotoxicity assays and by flow cytometry and enzyme- linked immunospot (ELISPOT) IFN-γ synthesis and release assays. 721.221 target cell expression of Bw4+ HLA-B27 alleles specifically inhibited DX9+ NK cell natural cytotoxicity and IFN-γ synthesis and release. A triple substitution of HLA-B7 at residues 80, 82, and 83 known to induce expression of the Bw4 serologic epitope also specifically inhibited DX9+ NK cell natural cytotoxicity and IFN-γ responses. Single HLA-B7 amino acid substitution variants were recognized in the same decreasing rank order by DX9+ NK cells and Bw4-reactive mAbs: G83R > R82L > N80T = HLA-B7. Natural cytotoxicity inhibition was reversed by the presence of blocking DX9 mAb. Natural cytotoxicity and IFN-γ production were coordinately regulated by a panel of HLA-B7 variants expressed on 721.221 cells, suggesting that these two effector functions are inhibited by the same K/R-mediated signaling mechanisms. In contrast, some NK cell clones killed 721.221 and K562 target cells equally well but released much more IFN-γ in response to K562 target cells. Differential regulation of natural cytotoxicity and IFN-γ release shows that NK cell effector functions respond to distinct signals.
UR - http://www.scopus.com/inward/record.url?scp=0032519671&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032519671&partnerID=8YFLogxK
M3 - Article
C2 - 9469412
AN - SCOPUS:0032519671
SN - 0022-1767
VL - 160
SP - 1573
EP - 1580
JO - Journal of Immunology
JF - Journal of Immunology
IS - 4
ER -