Abstract
NMR calculations on oxidized lumiflavin using density functional theory (DFT) reveal that methods including electron correlation show significant improvements in the flavin carbon and nitrogen NMR shieldings over uncorrelated Hartree-Fock (HF) results. In particular, the GIAO B3PW91//B3PW91 cc-pVTZ NMR shielding of the important N5 reactive center shows an improvement of 60.7 ppm over GIAO HF//B3PW91 cc-pVTZ, bringing it to within 6.1 ppm of the solvent-corrected experimental value. While the N5 center becomes dramatically shielded upon going from HF to correlated NMR shieldings, with the exception of C10a, all other NMR resonances are systematically deshielded. The nitrogens N1, N3, and N10 become deshielded by 23-26 ppm, and carbons become deshielded by an average of 5.2 ppm, bringing them into better agreement with experiment. Similar results are obtained with the significantly smaller 6-311G(d,p) basis set. The effects of electron correlation through the flavin geometry are also evident. The geometries calculated by B3LYP, B3PW91, and MP2 correlated methods using the 6-311G(d,p) basis lead to systematic NMR deshielding for all flavin heavy atoms in comparison with those obtained at the HF geometry. On average, the flavin nitrogens become deshielded by more than 10 ppm and carbons by almost 4 ppm. Similar changes, but of smaller magnitude, are observed for the NMR shieldings of fully reduced flavin, indicating that electron correlation is less important in that flavin state. The magnitude of the dramatic NMR shielding increase of several electrophilic centers upon flavin reduction is well captured by DFT methods. In particularly, the GIAO B3PW91/ cc-pVTZ N5 NMR shielding difference between oxidized and reduced flavin is 299.6 ppm, which compares well to the solvent-corrected experimental shielding difference of 299.1 ppm. The N5 center is also remarkable for its large decrease in shielding, by 33.4 ppm (98.0 ppm deshielding of σ11), upon protonation of the oxidized flavin at N1, a process which activates N5 for electrophilic attack.
Original language | English |
---|---|
Pages (from-to) | 854-863 |
Number of pages | 10 |
Journal | Journal of Physical Chemistry B |
Volume | 107 |
Issue number | 3 |
DOIs | |
State | Published - Jan 23 2003 |
Bibliographical note
Funding Information:This work was supported by an innovative R&D grant from HangzhouNormal University, a grant from National Natural Science Foundation of China (NSFC31370180), and a BBSRC-Warwick HRI core grant (BBS/E/H/00YH0271) to Hong Y, and grants (LQ13C020004, LQ13C060003, LQ12C02005) from the Natural Science Foundation of Zhejiang province, China.
ASJC Scopus subject areas
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films
- Materials Chemistry