Abstract
Convolutional neural networks (CNNs) have made resounding success in many computer vision tasks such as image classification and object detection. However, their performance degrades rapidly on tougher tasks where images are of low resolution or objects are small. In this paper, we point out that this roots in a defective yet common design in existing CNN architectures, namely the use of strided convolution and/or pooling layers, which results in a loss of fine-grained information and learning of less effective feature representations. To this end, we propose a new CNN building block called SPD-Conv in place of each strided convolution layer and each pooling layer (thus eliminates them altogether). SPD-Conv is comprised of a space-to-depth (SPD) layer followed by a non-strided convolution (Conv) layer, and can be applied in most if not all CNN architectures. We explain this new design under two most representative computer vision tasks: object detection and image classification. We then create new CNN architectures by applying SPD-Conv to YOLOv5 and ResNet, and empirically show that our approach significantly outperforms state-of-the-art deep learning models, especially on tougher tasks with low-resolution images and small objects. We have open-sourced our code at https://github.com/LabSAINT/SPD-Conv.
Original language | English |
---|---|
Title of host publication | Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2022, Proceedings |
Editors | Massih-Reza Amini, Stéphane Canu, Asja Fischer, Tias Guns, Petra Kralj Novak, Grigorios Tsoumakas |
Pages | 443-459 |
Number of pages | 17 |
DOIs | |
State | Published - 2023 |
Event | 22nd Joint European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2022 - Grenoble, France Duration: Sep 19 2022 → Sep 23 2022 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 13715 LNAI |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 22nd Joint European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2022 |
---|---|
Country/Territory | France |
City | Grenoble |
Period | 9/19/22 → 9/23/22 |
Bibliographical note
Publisher Copyright:© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
ASJC Scopus subject areas
- Theoretical Computer Science
- General Computer Science