Non-Darcian behavior of pyrolysis gas in a thermal protection system

Alexandre Martin, Iain D. Boyd

Research output: Contribution to journalArticlepeer-review

57 Scopus citations

Abstract

To improve heat and ablation rate modeling of the thermal protection system for reentry vehicles, a material response model with surface ablation and pyrolysis is developed. To accurately model the effects of the pyrolysis gas within the ablator, Darcy's law is replaced by Forchheimer's law for flow through porous media. The use of Forchheimer's law accounts for the inertial effects of the gas and removes any dependency on microscopic parameters, such as pore size. To characterize the flow, the Forchheimer number is proposed because it depends only on macroscopic quantities. To verify and validate the model, comparisons to experimental data and to prior computational results are presented. Applying Ergun's equation to evaluate the inertial parameter of the Forchheimer number, a simple test case is run. For the case of a generic carbon-phenolic ablator subjected to a typical reentry trajectory, conditions for non-Darcian behavior are investigated by way of a parametric study. Finally, the necessary conditions required for gas kinetic energy to be relevant are highlighted.

Original languageEnglish
Pages (from-to)60-68
Number of pages9
JournalJournal of Thermophysics and Heat Transfer
Volume24
Issue number1
DOIs
StatePublished - 2010

Bibliographical note

Funding Information:
The authors would like to thank the Government of Québec which, through the Fonds de recherche sur la nature et les technologies, provides a fellowship to the first author. Additional funding is provided by the Constellation University Institutes Program, under NASA Grant NCC3-989. The authors would also like to thank Adam J. Amar of NASA Johnson Space Center and formerly from Sandia National Laboratories, for numerous insightful discussions.

Funding

The authors would like to thank the Government of Québec which, through the Fonds de recherche sur la nature et les technologies, provides a fellowship to the first author. Additional funding is provided by the Constellation University Institutes Program, under NASA Grant NCC3-989. The authors would also like to thank Adam J. Amar of NASA Johnson Space Center and formerly from Sandia National Laboratories, for numerous insightful discussions.

FundersFunder number
Constellation University Institutes Program
Government of Québec
National Aeronautics and Space AdministrationNCC3-989
Fonds Québécois de la Recherche sur la Nature et les Technologies

    ASJC Scopus subject areas

    • Condensed Matter Physics

    Fingerprint

    Dive into the research topics of 'Non-Darcian behavior of pyrolysis gas in a thermal protection system'. Together they form a unique fingerprint.

    Cite this