Non-destructive detection of codling moth infestation in apples using acoustic impulse response signals

Alfadhl Y. Khaled, Nader Ekramirad, Chadwick A. Parrish, Paul S. Eberhart, Lauren E. Doyle, Kevin D. Donohue, Raul T. Villanueva, Akinbode A. Adedeji

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


Codling moth (CM) (Cydia pomonella L.) is the most destructive pest for apples, causing large economic losses when not properly mitigated. Efficient detection methods can limit the spread of this pest in the apple supply chain. Non-destructive methods have several advantages over the current methods in that they can be applied to every apple (or a much larger sample) thereby reducing the possibility of missed detection. This paper examines the feasibility of acoustic impulse response methods for detecting CM larvae-infested apples. Experiments were performed on control and artificially infested apples from three different cultivars. Signals were recorded with a contact sensor, and 21 signal features were proposed and extracted to characterise relevant properties of the response. The 21 features were evaluated with 11 machine leaning algorithms to determine if the features or their subsets contained information that could reliability determine if an apple was/is infested. Classification test results using a 10-fold cross-validation indicated accuracy rates between 80% and 92% for Fuji apples, between 92% and 99% for Gala apples, and 63% and 97% for Granny Smith apples. The impulse response required between 60 and 80 ms for each apple (not counting setup/transition time). These results from this study suggest that active impulse response classification can potentially improve the detection of post-harvest apple CM infestation detection along the supply chain.

Original languageEnglish
Pages (from-to)68-79
Number of pages12
JournalBiosystems Engineering
StatePublished - Dec 2022

Bibliographical note

Publisher Copyright:
© 2022 IAgrE


  • Acoustic impulse signals
  • Apple
  • Codling moth
  • Machine learning
  • Non-destructive testing
  • Pest infestation

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Food Science
  • Agronomy and Crop Science
  • Soil Science


Dive into the research topics of 'Non-destructive detection of codling moth infestation in apples using acoustic impulse response signals'. Together they form a unique fingerprint.

Cite this