TY - JOUR
T1 - Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex
AU - Lin, Ai Ling
AU - Fox, Peter T.
AU - Hardies, Jean
AU - Duong, Timothy Q.
AU - Gao, Jia Hong
PY - 2010/5/4
Y1 - 2010/5/4
N2 - The purpose of this study was to investigate activation-induced hypermetabolism and hyperemia by using a multifrequency (4, 8, and 16 Hz) reversing-checkerboard visual stimulation paradigm. Specifically, we sought to (i) quantify the relative contributions of the oxidative and nonoxidative metabolic pathways in meeting the increased energy demands [i.e., ATP production (JATP)] of task-induced neuronal activation and (ii) determine whether task-induced cerebral blood flow(CBF) augmentation was driven by oxidative or nonoxidative metabolic pathways. Focal increases in CBF, cerebral metabolic rate of oxygen (CMRO2; i.e., index of aerobic metabolism), and lactate production (JLac; i.e., index of anaerobic metabolism) were measured by using physiologically quantitative MRI and spectroscopy methods. Task-induced increases in JATP were small (12.2-16.7%) at all stimulation frequencies and were generated by aerobic metabolism (approximately 98%), with %ΔJATP being linearly correlated with the percentage change in CMRO2 (r = 1.00, P < 0.001). In contrast, taskinduced increases in CBF were large (51.7-65.1%) and negatively correlated with the percentage change in CMRO2 (r=-0.64,P=0.024),but positively correlated with %ΔJLac (r = 0.91, P < 0.001). These results indicate that (i) the energy demand of task-induced brain activation is small (approximately 15%) relative to the hyperemic response (approximately 60%), (ii) this energy demand is met through oxidative metabolism, and (iii) the CBF response is mediated by factors other than oxygen demand.
AB - The purpose of this study was to investigate activation-induced hypermetabolism and hyperemia by using a multifrequency (4, 8, and 16 Hz) reversing-checkerboard visual stimulation paradigm. Specifically, we sought to (i) quantify the relative contributions of the oxidative and nonoxidative metabolic pathways in meeting the increased energy demands [i.e., ATP production (JATP)] of task-induced neuronal activation and (ii) determine whether task-induced cerebral blood flow(CBF) augmentation was driven by oxidative or nonoxidative metabolic pathways. Focal increases in CBF, cerebral metabolic rate of oxygen (CMRO2; i.e., index of aerobic metabolism), and lactate production (JLac; i.e., index of anaerobic metabolism) were measured by using physiologically quantitative MRI and spectroscopy methods. Task-induced increases in JATP were small (12.2-16.7%) at all stimulation frequencies and were generated by aerobic metabolism (approximately 98%), with %ΔJATP being linearly correlated with the percentage change in CMRO2 (r = 1.00, P < 0.001). In contrast, taskinduced increases in CBF were large (51.7-65.1%) and negatively correlated with the percentage change in CMRO2 (r=-0.64,P=0.024),but positively correlated with %ΔJLac (r = 0.91, P < 0.001). These results indicate that (i) the energy demand of task-induced brain activation is small (approximately 15%) relative to the hyperemic response (approximately 60%), (ii) this energy demand is met through oxidative metabolism, and (iii) the CBF response is mediated by factors other than oxygen demand.
KW - Cerebral metabolic rate of oxygen
KW - Lactate production
UR - http://www.scopus.com/inward/record.url?scp=77952392788&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77952392788&partnerID=8YFLogxK
U2 - 10.1073/pnas.0909711107
DO - 10.1073/pnas.0909711107
M3 - Article
C2 - 20404151
AN - SCOPUS:77952392788
SN - 0027-8424
VL - 107
SP - 8446
EP - 8451
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 18
ER -