Novel approaches to plant drug discovery based on high throughput pharmacological screening and genetic manipulation

John Littleton, Trent Rogers, Deane Falcone

Research output: Contribution to journalArticlepeer-review

45 Scopus citations


Plants are potentially important for novel therapeutic drug leads, but the slowness of conventional methods for investigation of plants limits enthusiasm in the pharmaceutical industry. To overcome some of the drawbacks, we have applied high throughput pharmacological screening (HTPS) to crude plant extracts. Using a "differential smart screen", (DSS) the spectrum of activity contained in a crude extract is measured at several closely related receptor subtypes. This spectrum is then compared to that of known compounds. A unique spectrum suggests that the extract merits further investigation. Evaluation of species and environmental libraries of whole plants has demonstrated the value of this approach for rapid prioritization of plants for investigation. In addition, genomic and genetic manipulation of plants and plant cell cultures can increase the value of DSS. For example, the whole genomic potential of a plant species for biodiversity can be accessed by using gain of function mutations to generate a "functional genomics library" of mutant clonal cultures, and the bioactivity of these cultures tested by DSS. Clones that overproduce activity differing from the wild-type plant can be identified in this way. This "Natural Products Genomics" (NPG) strategy is limited by the massive numbers of clonal cultures that are required to cover all possible gain-of-function mutations. The rapidity and efficiency of this process can be improved by using transgenic plants expressing appropriate mammalian proteins. These may be designed to make the plant cell resemble a human cell for a specific form of toxicity. Now, "unnatural selection" of resistant mutant clones can be used to provide a sub-population potentially enriched in useful compounds. Alternatively, transgenic plant cells can be used for "in situ screening" in which a mammalian receptor protein, linked to a reporter construct, such as green fluorescent protein, is expressed. Clonal cultures that produce ligands for this receptor can now be rapidly identified visually in an ultra-HTPS. Overall, our aim is to use pharmacological screening, together with functional genomic approaches, to make plant drug discovery competitive with combinatorial chemistry.

Original languageEnglish
Pages (from-to)467-475
Number of pages9
JournalLife Sciences
Issue number5
StatePublished - Dec 22 2005


  • Drug discovery
  • Nicotinic acetylcholine receptors
  • Plants
  • Radioligand binding

ASJC Scopus subject areas

  • General Pharmacology, Toxicology and Pharmaceutics
  • General Biochemistry, Genetics and Molecular Biology


Dive into the research topics of 'Novel approaches to plant drug discovery based on high throughput pharmacological screening and genetic manipulation'. Together they form a unique fingerprint.

Cite this