TY - JOUR
T1 - Novel polyphenol molecule isolated from licorice root (Glycrrhiza glabra) induces apoptosis, G2/M cell cycle arrest, and Bcl-2 phosphorylation in tumor cell lines
AU - Rafi, Mohamed M.
AU - Vastano, Bret C.
AU - Zhu, Nanquan
AU - Ho, Chi Tang
AU - Ghai, Geetha
AU - Rosen, Robert T.
AU - Gallo, Michael A.
AU - DiPaola, Robert S.
PY - 2002/2/13
Y1 - 2002/2/13
N2 - Herbal therapies are commonly used by patients with cancer, despite little understanding about biologically active chemical derivatives. We recently demonstrated that the herbal combination PC-SPES, which contains licorice root, had anti-prostate cancer activity attributable to estrogen(s) that produced a chemical castration. A recent study also demonstrated that licorice root alone decreased circulating testosterone in men. Other studies demonstrated antitumor activity of PC-SPES in vitro associated with decreased expression of the anti-apoptotic protein Bcl-2 and in patients independent of chemical castration, suggesting that other mechanisms of antitumor activity exist separate from chemical castration. In the present study, we assessed licorice root extract for effects on Bcl-2 to identify novel cytotoxic derivatives. Licorice root extract induced Bcl-2 phosphorylation as demonstrated by immunoblot and G2/M cell cycle arrest, similarly to clinically used antimicrotubule agents such as paclitaxel. Bioassay-directed fractionations resulted in a biologically active fraction for Bcl-2 phosphorylation. HPLC separation followed by mass spectrometry and NMR identified 6 compounds. Only one molecule was responsible for Bcl-2 phosphorylation; it was identified as 1-(2,4-dihydroxyphenyl)-3-hydroxy-3-(4′-hydroxyphenyl) 1-propanone (β-hydroxy-DHP). The effect on Bcl-2 was structure specific, because α-hydroxy-DHP, 1-(2,4-dihydroxyphenyl)-2-hydroxy-3-(4′-hydroxyphenyl) 1-propanone, in contrast to β-hydroxy-DHP, was not capable of Bcl-2 phosphorylation. Pure β-hydroxy-DHP induced Bcl-2 phosphorylation in breast and prostate tumor cells, G2/M cell cycle arrest, apoptosis demonstrated by Annexin V and TUNEL assay, decreased cell viability demonstrated by a tetrazolium (MTT) assay, and altered microtubule structure. Therefore, these data demonstrate that licorice root contains β-hydroxy-DHP, which induced Bcl-2 phosphorylation, apoptosis, and G2/M cell cycle arrest, in breast and prostate tumor cells, similarly to the action of more complex (MW > 800) antimicrotubule agents used clinically.
AB - Herbal therapies are commonly used by patients with cancer, despite little understanding about biologically active chemical derivatives. We recently demonstrated that the herbal combination PC-SPES, which contains licorice root, had anti-prostate cancer activity attributable to estrogen(s) that produced a chemical castration. A recent study also demonstrated that licorice root alone decreased circulating testosterone in men. Other studies demonstrated antitumor activity of PC-SPES in vitro associated with decreased expression of the anti-apoptotic protein Bcl-2 and in patients independent of chemical castration, suggesting that other mechanisms of antitumor activity exist separate from chemical castration. In the present study, we assessed licorice root extract for effects on Bcl-2 to identify novel cytotoxic derivatives. Licorice root extract induced Bcl-2 phosphorylation as demonstrated by immunoblot and G2/M cell cycle arrest, similarly to clinically used antimicrotubule agents such as paclitaxel. Bioassay-directed fractionations resulted in a biologically active fraction for Bcl-2 phosphorylation. HPLC separation followed by mass spectrometry and NMR identified 6 compounds. Only one molecule was responsible for Bcl-2 phosphorylation; it was identified as 1-(2,4-dihydroxyphenyl)-3-hydroxy-3-(4′-hydroxyphenyl) 1-propanone (β-hydroxy-DHP). The effect on Bcl-2 was structure specific, because α-hydroxy-DHP, 1-(2,4-dihydroxyphenyl)-2-hydroxy-3-(4′-hydroxyphenyl) 1-propanone, in contrast to β-hydroxy-DHP, was not capable of Bcl-2 phosphorylation. Pure β-hydroxy-DHP induced Bcl-2 phosphorylation in breast and prostate tumor cells, G2/M cell cycle arrest, apoptosis demonstrated by Annexin V and TUNEL assay, decreased cell viability demonstrated by a tetrazolium (MTT) assay, and altered microtubule structure. Therefore, these data demonstrate that licorice root contains β-hydroxy-DHP, which induced Bcl-2 phosphorylation, apoptosis, and G2/M cell cycle arrest, in breast and prostate tumor cells, similarly to the action of more complex (MW > 800) antimicrotubule agents used clinically.
KW - Apoptosis
KW - Bcl-2
KW - Glycrrhiza glabra
KW - Licorice
KW - Microtubule
UR - http://www.scopus.com/inward/record.url?scp=0037070017&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037070017&partnerID=8YFLogxK
U2 - 10.1021/jf010774e
DO - 10.1021/jf010774e
M3 - Article
C2 - 11829627
AN - SCOPUS:0037070017
SN - 0021-8561
VL - 50
SP - 677
EP - 684
JO - Journal of Agricultural and Food Chemistry
JF - Journal of Agricultural and Food Chemistry
IS - 4
ER -