Abstract
Excited levels of Te130 were studied with the (n, n'?) reaction. Excitation functions, coincidences, angular distributions, and Doppler shifts were measured for ? rays from levels up to an excitation energy of 3.3 MeV. Detailed information that includes level lifetimes, multipole-mixing ratios, branching ratios, and electromagnetic transition rates deduced from these measurements is presented. Large-scale shell model calculations performed with all proton and neutron orbitals in the 50-82 shell are compared to these data, with generally good agreement, particularly for the positive-parity states. To investigate emerging collectivity in Te130, the Kumar-Cline sum rules were used to evaluate rotational invariants from the shell model calculations. Whereas the ground state and first-excited state show the greatest average deformation, as expected, all of the low-lying states are weakly deformed and triaxial.
Original language | English |
---|---|
Article number | 024329 |
Journal | Physical Review C |
Volume | 105 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2022 |
Bibliographical note
Publisher Copyright:© 2022 American Physical Society.
Funding
This work was supported in part by the National Science Foundation Grants No. PHY0139504, No. PHY-9901508 and No. PHY-1913028, by the Australian Research Council Discovery Grant No. DP170101673, by the Office of Naval Research Naval Academy Trident Scholar Program, and by the Nancy Cain and Jeffrey A Marcus Endowment for the Sciences at the University of Dallas. We also acknowledge helpful discussions with Professor M. T. McEllistrem (deceased) of the University of Kentucky. The assistance of the accelerator engineer, H. E. Baber, is sincerely appreciated.
Funders | Funder number |
---|---|
Nancy Cain and Jeffrey A Marcus Endowment for the Sciences | |
Office of Naval Research Naval Academy | |
National Science Foundation Arctic Social Science Program | PHY-9901508, PHY0139504, PHY-1913028 |
National Science Foundation Arctic Social Science Program | |
Australian Research Council | DP170101673 |
Australian Research Council |
ASJC Scopus subject areas
- Nuclear and High Energy Physics