Obesity reduces left ventricular strains, torsion, and synchrony in mouse models: A cine displacement encoding with stimulated echoes (DENSE) cardiovascular magnetic resonance study

Sage P. Kramer, David K. Powell, Christopher M. Haggerty, Cassi M. Binkley, Andrea C. Mattingly, Lisa A. Cassis, Frederick H. Epstein, Brandon K. Fornwalt

Research output: Contribution to journalArticlepeer-review

30 Scopus citations


Background: Obesity affects a third of adults in the US and results in an increased risk of cardiovascular mortality. While the mechanisms underlying this increased risk are not well understood, animal models of obesity have shown direct effects on the heart such as steatosis and fibrosis, which may affect cardiac function. However, the effect of obesity on cardiac function in animal models is not well-defined. We hypothesized that diet-induced obesity in mice reduces strain, torsion, and synchrony in the left ventricle (LV). Methods. Ten 12-week-old C57BL/6 J mice were randomized to a high-fat or low-fat diet. After 5 months on the diet, mice were imaged with a 7 T ClinScan using a cine DENSE protocol. Three short-axis and two long-axis slices were acquired for quantification of strains, torsion and synchrony in the left ventricle. Results: Left ventricular mass was increased by 15% (p = 0.032) with no change in volumes or ejection fraction. Subepicardial strain was lower in the obese mice with a 40% reduction in circumferential strain (p = 0.008) a 53% reduction in radial strain (p = 0.032) and a trend towards a 19% reduction in longitudinal strain (p = 0.056). By contrast, subendocardial strain was modestly reduced in the obese mice in the circumferential direction by 12% (p = 0.028), and no different in the radial (p = 0.690) or longitudinal (p = 0.602) directions. Peak torsion was reduced by 34% (p = 0.028). Synchrony of contraction was also reduced (p = 0.032) with a time delay in the septal-to-lateral direction. Conclusions: Diet-induced obesity reduces left ventricular strains and torsion in mice. Reductions in cardiac strain are mostly limited to the subepicardium, with relative preservation of function in the subendocardium. Diet-induced obesity also leads to reduced synchrony of contraction and hypertrophy in mouse models.

Original languageEnglish
Article number109
JournalJournal of Cardiovascular Magnetic Resonance
Issue number1
StatePublished - Dec 31 2013

Bibliographical note

Funding Information:
This work was supported by a pilot grant from an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the NIH under grant number 8 P20 GM103527-05, the University of Kentucky Cardiovascular Research Center, grant number UL1RR033173 [TL1 RR033172, KL2 RR033171] from the National Center for Research Resources (NCRR), funded by the Office of the Director, National Institutes of Health (NIH) and supported by the NIH Roadmap for Medical Research, an NIH Early Independence Award to BKF (1DP5OD012132-01), and contributions made by local businesses and individuals through a partnership between Kentucky Children’s Hospital and Children’s Miracle network. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding sources.


  • Cardiovascular magnetic resonance
  • Heart
  • Mouse
  • Obesity
  • Strain

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine
  • Family Practice
  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Obesity reduces left ventricular strains, torsion, and synchrony in mouse models: A cine displacement encoding with stimulated echoes (DENSE) cardiovascular magnetic resonance study'. Together they form a unique fingerprint.

Cite this