Oligomerization but Not Membrane Bending Underlies the Function of Certain F-BAR Proteins in Cell Motility and Cytokinesis

Nathan A. McDonald, Craig W. Vander Kooi, Melanie D. Ohi, Kathleen L. Gould

Research output: Contribution to journalArticlepeer-review

59 Scopus citations

Abstract

F-BAR proteins function in diverse cellular processes by linking membranes to the actin cytoskeleton. Through oligomerization, multiple F-BAR domains can bend membranes into tubules, though the physiological importance of F-BAR-to-F-BAR assemblies is not yet known. Here, we investigate the F-BAR domain of the essential cytokinetic scaffold, Schizosaccharomyces pombe Cdc15, during cytokinesis. Challenging a widely held view that membrane deformation is a fundamental property of F-BARs, we report that the Cdc15 F-BAR binds, but does not deform, membranes in vivo or in vitro, and six human F-BAR domains-including those from Fer and RhoGAP4-share this property. Nevertheless, tip-to-tip interactions between F-BAR dimers are critical for Cdc15 oligomerization and high-avidity membrane binding, stabilization of contractile ring components at the medial cortex, and the fidelity of cytokinesis. F-BAR oligomerization is also critical for Fer and RhoGAP4 physiological function, demonstrating its broad importance to F-BAR proteins that function without membrane bending.

Original languageEnglish
Pages (from-to)725-736
Number of pages12
JournalDevelopmental Cell
Volume35
Issue number6
DOIs
StatePublished - Dec 21 2015

Bibliographical note

Publisher Copyright:
© 2015 Elsevier Inc.

ASJC Scopus subject areas

  • Molecular Biology
  • General Biochemistry, Genetics and Molecular Biology
  • Developmental Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Oligomerization but Not Membrane Bending Underlies the Function of Certain F-BAR Proteins in Cell Motility and Cytokinesis'. Together they form a unique fingerprint.

Cite this