Optically thick [O I] and [C II] emission toward NGC 6334A

N. P. Abel, A. P. Sarma, T. H. Troland, G. J. Ferland

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

This work focuses on [O I] and [C II] emission toward NGC 6334A, an embedded H+ region/PDR only observable at infrared or longer wavelengths. A geometry in which nearly all the emission escapes out the side of the cloud facing the stars, such as Orion, is not applicable to this region. Instead, we find the geometry to be one in which the H+ region and associated PDR is embedded in the molecular cloud. Constant-density PDR calculations are presented which predict line intensities as a function of AV [or N(H)], hydrogen density (nH), and incident UV radiation field (G0). We find that a single-component model with AV ∼ 650 mag, nH = 5 × 105 cm 3, and GO = 7 × 104 reproduces the observed [O I] and [C II] intensities, and that the low [O II 63 to 146 μm ratio is due to line optical depth effects in the [O I] lines, produced by a large column density of atomic/molecular gas. We find that the effects of a density law would increase our derived AV, while the effects of an asymmetric geometry would decrease AV, with the two effects largely canceling. We conclude that optically selected H+ regions adjacent to PDRs, such as Orion, likely have a different viewing angle or geometry than similar regions detected through IR observations. Overall, the theoretical calculations presented in this work have utility for any PDR embedded in a molecular cloud.

Original languageEnglish
Pages (from-to)1024-1032
Number of pages9
JournalAstrophysical Journal
Volume662
Issue number2 I
DOIs
StatePublished - Jun 20 2007

Funding

FundersFunder number
Directorate for Mathematical and Physical Sciences0094050

    Keywords

    • Dust, extinction
    • Infrared: general
    • Line: formation
    • Radiative transfer

    ASJC Scopus subject areas

    • Astronomy and Astrophysics
    • Space and Planetary Science

    Fingerprint

    Dive into the research topics of 'Optically thick [O I] and [C II] emission toward NGC 6334A'. Together they form a unique fingerprint.

    Cite this