Optimization of sustainable machining of ti6al4v alloy using genetic algorithm for minimized carbon emissions and machining costs, and maximized energy efficiency and human health benefits

Alper Uysal, I. S. Jawahir

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Sustainable machining operations have in recent times become meaningful and viable options due to the need for significantly reducing the abundant and indiscriminate use of cutting fluids, especially petroleum-based. In this study, sustainable machining operations were performed on Ti6Al4V alloy under dry, minimum quantity lubrication (MQL), cryogenic (Liquid Nitrogen - LN2) machining and at two different hybrid cooling/lubricating conditions. In the orthogonal turning tests performed, three different cutting speeds and a constant undeformed chip thickness were used as cutting parameters. During orthogonal machining experiment, cutting force components were measured and used to calculate the consumed cutting power which was subsequently utilized to determine the carbon emissions, energy efficiency and machining costs. A multi-objective optimization algorithm was developed and used for sustainable machining of Ti6Al4V alloy to achieve minimized carbon emissions, improved energy efficiency and human health conditions, and reduced machining costs through Non-dominated Sorting Genetic Algorithm II (NSGA-II). Cutting parameters such as cutting speed, feed, depth of cut, and the cooling/lubricating methods which significantly affect the machining process were considered in the optimization of machining operations for maximizing the machining performance with minimized carbon emissions and machining costs, and maximized energy efficiency and human health benefits.

Original languageEnglish
Title of host publicationAdvanced Manufacturing
ISBN (Electronic)9780791885567
DOIs
StatePublished - 2021
EventASME 2021 International Mechanical Engineering Congress and Exposition, IMECE 2021 - Virtual, Online
Duration: Nov 1 2021Nov 5 2021

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume2B-2021

Conference

ConferenceASME 2021 International Mechanical Engineering Congress and Exposition, IMECE 2021
CityVirtual, Online
Period11/1/2111/5/21

Bibliographical note

Funding Information:
Alper Uysal acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBİTAK) BIDEB-2219 Postdoctoral Research program. In addition, the authors would like to thank Dr. Ridvan Aydin for his help for the optimization works, Shi ‘Steve’ Chen from Kennametal® Inc., for providing the tool inserts and to Adam Price for his help in the experimental studies.

Publisher Copyright:
Copyright © 2021 by ASME.

Keywords

  • Carbon emissions
  • Cryogenic cooling
  • Cutting force
  • Genetic algorithm
  • Hybrid cooling
  • Machining cost
  • MQL
  • Sustainable machining

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Optimization of sustainable machining of ti6al4v alloy using genetic algorithm for minimized carbon emissions and machining costs, and maximized energy efficiency and human health benefits'. Together they form a unique fingerprint.

Cite this