TY - JOUR
T1 - Optimizing nitrogen-fertilizer management by using RZWQM2 with consideration of precipitation can enhance nitrogen utilization on the Loess Plateau
AU - Ding, Dianyuan
AU - Yang, Zijie
AU - Wu, Lihong
AU - Zhao, Ying
AU - Zhang, Xi
AU - Chen, Xiaoping
AU - Feng, Hao
AU - Zhang, Chao
AU - Wendroth, Ole
N1 - Publisher Copyright:
© 2024 The Authors
PY - 2024/6/30
Y1 - 2024/6/30
N2 - Crop yields are related to N fertilizer management, and also depend on local precipitation. Varying precipitation levels with long-term meteorological data have not been considered to optimize nitrogen (N) strategies in previous studies on the Loess Plateau of China. In this study, Root Zone Water Quality Model 2 (RZWQM2) was calibrated and validated using data from multi-year experiments and used to assess and optimize N management strategies for winter wheat cultivation. Results showed that the basal dressing fertilizer with 120 kg N ha-1 together with the topdressing of 67–77 kg N ha-1 was recommended in regions with 443 mm average annual precipitation. For those with 364 mm and 290 mm average annual precipitation, the basal dressing fertilizer with 90 kg N ha-1 together with the topdressing of 67–77 kg N ha-1 and the basal dressing with 90 kg N ha-1 together with the topdressing fertilizer of 13–23 kg N ha-1 were recommended, respectively. Compared with farmers’ practice (i.e., the single basal dressing), although decreasing the total rate by 12–18 kg N ha-1, the optimized N strategies (i.e., the basal fertilizer together with one-time topdressing) can effectively promote grain N uptake, nitrogen harvest index, and agronomic efficiency of N. It also maintained similar grain yield, evapotranspiration, and crop water productivity. The minimum precipitation threshold was around 300 mm, where the topdressing N fertilizer had little influence on grain yield, evapotranspiration, and grain N uptake. Additionally, the largest advantage of optimized N strategies was saving N fertilizer and reducing the environment footprint of wheat production. However, the crop production under the optimized N strategies was more sensitive to the precipitation variation than that under farmers’ practice. Thus, if climate continues to change following historical data, greater harvest fluctuations are expected under optimized N strategies. To cope with the evolving climate change, optimized N strategies should be integrated with other management measures for smallholder farming households on the Loess Plateau.
AB - Crop yields are related to N fertilizer management, and also depend on local precipitation. Varying precipitation levels with long-term meteorological data have not been considered to optimize nitrogen (N) strategies in previous studies on the Loess Plateau of China. In this study, Root Zone Water Quality Model 2 (RZWQM2) was calibrated and validated using data from multi-year experiments and used to assess and optimize N management strategies for winter wheat cultivation. Results showed that the basal dressing fertilizer with 120 kg N ha-1 together with the topdressing of 67–77 kg N ha-1 was recommended in regions with 443 mm average annual precipitation. For those with 364 mm and 290 mm average annual precipitation, the basal dressing fertilizer with 90 kg N ha-1 together with the topdressing of 67–77 kg N ha-1 and the basal dressing with 90 kg N ha-1 together with the topdressing fertilizer of 13–23 kg N ha-1 were recommended, respectively. Compared with farmers’ practice (i.e., the single basal dressing), although decreasing the total rate by 12–18 kg N ha-1, the optimized N strategies (i.e., the basal fertilizer together with one-time topdressing) can effectively promote grain N uptake, nitrogen harvest index, and agronomic efficiency of N. It also maintained similar grain yield, evapotranspiration, and crop water productivity. The minimum precipitation threshold was around 300 mm, where the topdressing N fertilizer had little influence on grain yield, evapotranspiration, and grain N uptake. Additionally, the largest advantage of optimized N strategies was saving N fertilizer and reducing the environment footprint of wheat production. However, the crop production under the optimized N strategies was more sensitive to the precipitation variation than that under farmers’ practice. Thus, if climate continues to change following historical data, greater harvest fluctuations are expected under optimized N strategies. To cope with the evolving climate change, optimized N strategies should be integrated with other management measures for smallholder farming households on the Loess Plateau.
KW - Climate change
KW - Dryland farming
KW - Meteorological data
KW - Split N application
KW - Winter wheat
UR - http://www.scopus.com/inward/record.url?scp=85194338296&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85194338296&partnerID=8YFLogxK
U2 - 10.1016/j.agwat.2024.108890
DO - 10.1016/j.agwat.2024.108890
M3 - Article
AN - SCOPUS:85194338296
SN - 0378-3774
VL - 299
JO - Agricultural Water Management
JF - Agricultural Water Management
M1 - 108890
ER -