Abstract
Recently, there have been significant interests in studying the so-called “double-descent” of the generalization error of linear regression models under the overparameterized and overfitting regime, with the hope that such analysis may provide the first step towards understanding why overparameterized deep neural networks (DNN) still generalize well. However, to date most of these studies focused on the min l2-norm solution that overfits the data. In contrast, in this paper we study the overfitting solution that minimizes the l1-norm, which is known as Basis Pursuit (BP) in the compressed sensing literature. Under a sparse true linear regression model with p i.i.d. Gaussian features, we show that for a large range of p up to a limit that grows exponentially with the number of samples n, with high probability the model error of BP is upper bounded by a value that decreases with p. To the best of our knowledge, this is the first analytical result in the literature establishing the double-descent of overfitting BP for finite n and p. Further, our results reveal significant differences between the double-descent of BP and min l2-norm solutions. Specifically, the double-descent upper-bound of BP is independent of the signal strength, and for high SNR and sparse models the descent-floor of BP can be much lower and wider than that of min l2-norm solutions.
Original language | English |
---|---|
Journal | Advances in Neural Information Processing Systems |
Volume | 2020-December |
State | Published - 2020 |
Event | 34th Conference on Neural Information Processing Systems, NeurIPS 2020 - Virtual, Online Duration: Dec 6 2020 → Dec 12 2020 |
Bibliographical note
Publisher Copyright:© 2020 Neural information processing systems foundation. All rights reserved.
Funding
This work has been supported in part by an NSF sub-award via Duke University (NSF IIS-1932630), NSF grants CAREER CNS-1943226, ECCS-1818791, CCF-1758736, CNS-1758757, CNS-1717493, ONR grant N00014-17-1-2417, and a Google Faculty Research Award.
Funders | Funder number |
---|---|
National Science Foundation Arctic Social Science Program | |
Office of Naval Research Naval Academy | N00014-17-1-2417 |
Office of Naval Research Naval Academy | |
Duke-Kunshan University | CNS-1943226, CCF-1758736, CNS-1717493, ECCS-1818791, CNS-1758757, IIS-1932630 |
Duke-Kunshan University | |
ASJC Scopus subject areas
- Computer Networks and Communications
- Information Systems
- Signal Processing