Abstract
Susceptibility of amino acids in myofibrillar protein isolate (MPI) exposed to three oxidizing matrixes commonly encountered in muscle foods was compared. MPI suspensions (20 mg protein/mL) in 15 mM piperazine-N,N bis(2-ethane sulphonic acid) buffer (pH 6.0) were oxidized with an iron-catalyzed oxidizing system (IOS, 0.01 mM FeCl3, 0.1 mM ascorbic acid, 0.0-10.0 mM H2O2), a lipid-oxidizing system (LOS, 0.0-10.0 mM linoleic acid, 3750 units of lipoxidase/mL), or a metmyoglobin (MetMb) oxidizing system (MOS, 0.0-0.5 mM H2O2/MetMb) for 24 h at 4 °C. Changes were quantitatively analyzed by determining amino acids on a reverse-phase liquid chromatographic (LC) system. In IOS, the amount of cysteine, methionine and tyrosine decreased (P < 0.05) with increasing [H2O2]. In LOS, only cysteine and methionine were lowered at increasing linoleic acid concentrations. In MOS, the quantity of alanine, cysteine, glycine, histidine, leucine and lysine, as well as the total amount of amino acids were significantly reduced at high concentrations of MetMb/H2O2. The results suggest that under typical meat processing conditions, iron- and metmyoglobin-catalyzed reactions play a major role in the oxidation of amino acids in muscle proteins.
Original language | English |
---|---|
Pages (from-to) | 607-616 |
Number of pages | 10 |
Journal | Food Chemistry |
Volume | 103 |
Issue number | 2 |
DOIs | |
State | Published - 2007 |
Bibliographical note
Funding Information:This research was supported by a CSREES/USDA NRI grant, under Agreement Grant No. 2004-35503-14122.
Keywords
- Amino acids
- Hydroxyl radicals
- Metmyoglobin
- Protein oxidation
ASJC Scopus subject areas
- Analytical Chemistry
- Food Science