Oxidative signature of cerebrospinal fluid from mild cognitive impairment and Alzheimer disease patients

Fabio Di Domenico, Gilda Pupo, Esther Giraldo, Mari Carmen Badìa, Paloma Monllor, Ana Lloret, Maria Eugenia Schininà, Alessandra Giorgi, Chiara Cini, Antonella Tramutola, D. Allan Butterfield, José Viña, Marzia Perluigi

Research output: Contribution to journalArticlepeer-review

74 Scopus citations


Background Several studies suggest that pathological changes in Alzheimer's disease (AD) brain begin around 10-20 years before the onset of cognitive impairment. Biomarkers that can support early diagnosis and predict development of dementia would, therefore, be crucial for patient care and evaluation of drug efficacy. Although cerebrospinal fluid (CSF) levels of Aβ42, tau, and p-tau are well-established diagnostic biomarkers of AD, there is an urgent need to identify additional molecular alterations of neuronal function that can be evaluated at the systemic level. Objectives This study was focused on the analysis of oxidative stress-related modifications of the CSF proteome, from subjects with AD and amnestic mild cognitive impairment (aMCI). Methods A targeted proteomics approach has been employed to discover novel CSF biomarkers that can augment the diagnostic and prognostic accuracy of current leading CSF biomarkers. CSF samples from aMCI, AD and control individuals (CTR) were collected and analyzed using a combined redox proteomics approach to identify the specific oxidatively modified proteins in AD and aMCI compared with controls. Results The majority of carbonylated proteins identified by redox proteomics are found early in the progression of AD, i.e., oxidatively modified CSF proteins were already present in aMCI compared with controls and remain oxidized in AD, thus suggesting that dysfunction of selected proteins initiate many years before severe dementia is diagnosed. Conclusions The above findings highlight the presence of early oxidative damage in aMCI before clinical dementia of AD is manifested. The identification of early markers of AD that may be detected peripherally may open new prospective for biomarker studies.

Original languageEnglish
Pages (from-to)1-9
Number of pages9
JournalFree Radical Biology and Medicine
StatePublished - Feb 1 2016

Bibliographical note

Publisher Copyright:
© 2015 Published by Elsevier Inc.


  • APOE
  • Biomarkers
  • CSF
  • Extracellular chaperones
  • Protein oxidation
  • Redox proteomics

ASJC Scopus subject areas

  • Biochemistry
  • Physiology (medical)


Dive into the research topics of 'Oxidative signature of cerebrospinal fluid from mild cognitive impairment and Alzheimer disease patients'. Together they form a unique fingerprint.

Cite this