Abstract
Background: Termite lignocellulose digestion is achieved through a collaboration of host plus prokaryotic and eukaryotic symbionts. In the present work, we took a combined host and symbiont metatranscriptomic approach for investigating the digestive contributions of host and symbiont in the lower termite Reticulitermes flavipes. Our approach consisted of parallel high-throughput sequencing from (i) a host gut cDNA library and (ii) a hindgut symbiont cDNA library. Subsequently, we undertook functional analyses of newly identified phenoloxidases with potential importance as pretreatment enzymes in industrial lignocellulose processing. Results: Over 10,000 expressed sequence tags (ESTs) were sequenced from the 2 libraries that aligned into 6,555 putative transcripts, including 171 putative lignocellulase genes. Sequence analyses provided insights in two areas. First, a non-overlapping complement of host and symbiont (prokaryotic plus protist) glycohydrolase gene families known to participate in cellulose, hemicellulose, alpha carbohydrate, and chitin degradation were identified. Of these, cellulases are contributed by host plus symbiont genomes, whereas hemicellulases are contributed exclusively by symbiont genomes. Second, a diverse complement of previously unknown genes that encode proteins with homology to lignase, antioxidant, and detoxification enzymes were identified exclusively from the host library (laccase, catalase, peroxidase, superoxide dismutase, carboxylesterase, cytochrome P450). Subsequently, functional analyses of phenoloxidase activity provided results that were strongly consistent with patterns of laccase gene expression. In particular, phenoloxidase activity and laccase gene expression are mostly restricted to symbiont-free foregut plus salivary gland tissues, and phenoloxidase activity is inducible by lignin feeding. Conclusion: To our knowledge, this is the first time that a dual host-symbiont transcriptome sequencing effort has been conducted in a single termite species. This sequence database represents an important new genomic resource for use in further studies of collaborative host-symbiont termite digestion, as well as development of coevolved host and symbiontderived biocatalysts for use in industrial biomass-to-bioethanol applications. Additionally, this study demonstrates that: (i) phenoloxidase activities are prominent in the R. flavipes gut and are not symbiont derived, (ii) expands the known number of host and symbiont glycosyl hydrolase families in Reticulitermes, and (iii) supports previous models of lignin degradation and host-symbiont collaboration in cellulose/hemicellulose digestion in the termite gut. All sequences in this paper are available publicly with the accession numbers FL634956-FL640828 (Termite Gut library) and FL641015-FL645753 (Symbiont library).
Original language | English |
---|---|
Journal | Unknown Journal |
Volume | 2 |
Issue number | 1 |
DOIs | |
State | Published - 2009 |
Bibliographical note
Funding Information:We thank V Lietze, M Tarver, T Conklin, K Simms and M Schwinghammer for assistance with gut dissections. We also thank W Farmerie (University of Florida), and E Kovaleva, G Buchman, and R Balcerzak (Chesapeake-PERL) for helpful discussions and advice. This research was supported by a University of Florida IFAS Innovation Grant to the authors, CSREES-USDA-NRI grant no. 2007-35607-17777 to MES and XZ, and through the Consortium for Plant Biotechnology Research, Inc. by DOE Prime Agreement no. DE-FG36-02GO12026 to MES and DGB (this support does not constitute an endorsement by DOE or by the Consortium for Plant Biotechnology Research, Inc. of the views expressed in this publication).
Funding
We thank V Lietze, M Tarver, T Conklin, K Simms and M Schwinghammer for assistance with gut dissections. We also thank W Farmerie (University of Florida), and E Kovaleva, G Buchman, and R Balcerzak (Chesapeake-PERL) for helpful discussions and advice. This research was supported by a University of Florida IFAS Innovation Grant to the authors, CSREES-USDA-NRI grant no. 2007-35607-17777 to MES and XZ, and through the Consortium for Plant Biotechnology Research, Inc. by DOE Prime Agreement no. DE-FG36-02GO12026 to MES and DGB (this support does not constitute an endorsement by DOE or by the Consortium for Plant Biotechnology Research, Inc. of the views expressed in this publication).
Funders | Funder number |
---|---|
NRI/CSREES/USDA | 2007-35607-17777 |
University of Florida IFAS | |
U.S. Department of Energy EPSCoR | DE-FG36-02GO12026 |
ASJC Scopus subject areas
- Biotechnology
- Applied Microbiology and Biotechnology
- Renewable Energy, Sustainability and the Environment
- General Energy
- Management, Monitoring, Policy and Law